Eksperyment ICARUS: neutrina i rozpad protonu

Agnieszka Zalewska

seminarium Zakładów Cząstek, 23.04.2002

W oparciu o następujące materiały:

The ICARUS experiment, A Second-Generation Proton Decay Experiment and Neutrino Observatory at the Gran Sasso Laboratory, Initial Physics Program, LNGS-P28/2001, March 1, 2001

A Second-Generation Proton Decay Experiment and Neutrino Observatory at the Gran Sasso Laboratory, LNGS-EXP 13/89 add.2/01, November 26, 2001

C.Rubbia: Liquid Argon Imaging: A Novel Detection Technology, Particle Physics Seminar, CERN, February 26, 2002 http://pcnometh4.cern.ch, http://www.lngs.infn.it

Współpraca ICARUS

F. Arneodo, B. Babussinov, B. Badelek, A. Badertscher, M. Baldo-Ceolin, G. Battistoni, B. Bekman, P. Benetti, E. Bernardini, A. Borio di Tigliole, M. Bischofberger, R. Brunetti, A. Bueno, E. Calilgarich, D. Cavalli, F. Cavanna, P. Cennini, S. Centro, A. Cesana, G. Chen, Y. Chen, D. Cline, P. Crivelli, A. Dabrowska, M. Baszkiewicz,
C. De Vecchi R. Doffini, M. Felcini, A. Ferrari F. Ferri, A. Gigli Berzolari, I. Gil-Botella, K. Graczyk, L. Grandi, K. He, J. Holeczek, X. Huang, C. Juszczak, D. Kleiczewska, J. Kislei, L. Knecht, T. Kozlowski, H. Kuna-Ciskal, M. Laffranchi, J. Lagoda, Z. Li, B. Lisowski, F. Lu, J. Ma, M. Markiewicz, F. Mauri, C. Matthey, G. Meng, C. Montanari, S. Muraro, G. Natterer, S. Navas-Concha, G. Nurzia, S. Otwinowski, O. Palamara D. Pascoli, L. Periale, G. Piano Mortari, A. Piazzoli, P. Picchi, F. Pietropaolo, W. Polchiopek, T. Rancati, A. Rappoldi, G.L. Raselli, J. Rico, E. Rondio, M. Rossella, A. Rubbia, C. Rubbia, P. Sala, D. Scannicchio, E. Segreto, Y. Seo, F. Sergiampietri, J. Sobczyk J. Stepaniak, M. Stodulski, M. Szarska, M. Szeptycka, M. Terrani, S. Vertura, C. Vignoli, H. Wang, M. Wojcik, G. Xu, X. Yang, A. Zalewska, J. Zalipska, C. Zhang, Q. Zhang, S. Zhen, W. Zipper.

University and INFN of: L'Aguila, LNF, LNGB, Miano, Pa-	dova, Pavia, Pisa - Italy
ETH Hönggerberg, Zürich - Switzerland	IHEP, Academia Sinica, Beljeing - China
CNR istitute of cosmogeophysics, Torino - Italy	Politecnico di Milano - Italy
University of Silesia, Katowice - Poland	University of Mining and Metallurgy, Krakow - Poland
H.Niewodniczanski Inst. of Nucl. Phys., Krakow - Poland	Jagelonian University, Krakow - Poland
Gracow University of Technology, Krakow - Peland	A Soltan Inst. for Nucl. Studies, Warszawa - Poland
Warsaw University, Warszawa - Poland	Wroclaw University, Wroclaw - Poland
UCLA Los Angeles - UBA	r.

This is an "open" collaboration: new teams welcome !

Plan referatu

Detektor:

- · zasada działania
- stan obecny i przyszła rozbudowa
- analiza danych z testów naziemnych
 Fizyka:
- neutrina atmosferyczne i słoneczne
- neutrina z wiązki CNGS
- poszukiwania rozpadu protonu
- "Icarusiątko" w KEK-u?

Detektor – wielkie komory TPC wypełnione ciekłym argonem (300t/komorę)

- Wykorzystywane zjawisko jonizacji w ciekłym argonie przy przejściu cząstek naładowanych (5500 par e-jon/mm),
- Dod wpływem pola elektrycznego (typowo 500 V/cm) elektrony jonizacji dryfują do drutów anodowych

Elektroniczne obrazowanie

Trójwymiarowy obraz torów i oddziaływań w oparciu o pomiar sygnałów na drutach (dwie współrzędne) i o pomiar czasu dryfu (trzecia współrzędna)

"Elektroniczna komora pęcherzykowa"

ICARUS - stan obecny

- ◆ 2 komory TPC po 300 ton ciekłego argonu każda,
- pierwsza komora gotowa i w pełni przetestowana w 2001 roku w Pawii, m.in. dwa miesiące zbierania danych dla promieni kosmicznych
- montaż drugiej komory aktualnie na ukończeniu,
- instalacja obu komór w Gran Sasso na przełomie 2002/2003,
- do 2006 roku badania neutrin atmosferycznych, słonecznych i poszukiwania rozpadów protonu.

ICARUS - obecny detektor

Under construction Number of independent containers = 2 Single container Internal Dimensions: Length = 19.6 m , Width = 3.9 m , Height = 4.2 m Total (cold) Internal Volume = 534 m³ Signal feedthroughs Sensitive LAr mass = 476 ton Number of wires chambers = 4 Readout planes / chamber = 3 at 0°, ± 60° from horizontal Maximum drift = 1.5 m Operating field = 500 V / cm Maximum drift time - 1 ms Wires pitch = 3 mm Total number of channels = 58368 HV feedthroughs External insulation layer (400 mm) 2 independent aluminum containers each one transportable inside the GS Laboratory LN2 cooling circuit Slide 11

Obecny detektor w fazie konstrukcji

Naziemne testy w Pawii w 2001 roku

- W pełni udane testy pierwszej docelowej komory TPC eksperymentu ICARUS - kwiecień-lipiec 2001
- test konstrukcji mechanicznej i kriogeniki
- test komory i jej wyposażenia: fotopowielaczy, monitorów czystości argonu, mierników poziomu itp..
- test elektroniki odczytu i systemu zbierania danych (kompletny przypadek ma objętość 200 Mbytes)
- zebranych zostało 28000 przypadków dla różnych konfiguracji trygera zewnętrznego (w oparciu o scyntylatory) i trygera wewnętrznego (w oparciu o fotopowielacze)

T600 test @ Pv: Run 308 - Evt 4 (July 2nd, 2001)

Kandydat na V⁰

Oddziaływanie hadronowe

Rozpad – widok w trzech projekcjach

Możliwości detektora

- Measurement of local energy deposition:
 - Electron / gamma separation (3mm)
 - Particle ID by means of dE/dx vs range measurement
- Total energy reconstruction of the events from charge integration → excellent calorimeter with high accuracy for contained events

RESOLUTIONS

Low energy electrons: Electromagn. showers: Hadronic showers (pure LAr): Hadronic showers (+TMG): $\sigma(E)/E = 7\% / \sqrt{E(MeV)}$ $\sigma(E)/E = 3\% / \sqrt{E(GeV)}$ $\sigma(E)/E = 16\% / \sqrt{E(GeV)} + 1\%$ $\sigma(E)/E = 12\% / \sqrt{E(GeV)} + 0.2\%$

Możliwości detektora

Obecny detektor – instalacja w G.S.

Rozbudowa detektora do 3 kton

Fizyka neutrin atmosferycznych

 Możliwość badania oddziaływań neutrin mionowych i elektronowych (typu CC i NC) praktycznie aż do progu kinematycznego (prawie 50% neutrin atmosferycznych ma energię poniżej 400 MeV - próg w SuperK)

 Możliwy pomiar protonu odrzutu (w 60% przypadków) oraz analiza i rekonstrukcja skomplikowanych wielocząstkowych stanów końcowych

 Lepsza rekonstrukcja kierunku i energii neutrina (w oparciu o wszystkie cząstki w stanie końcowym, a nie tylko lepton)

Zenith angle resolution as a function of the incoming neutrino energy

10000

8000

6000

4000

2000

4000

3500

3000

2500

2000

1500

1000 500

D

- $v_{\mu} + \bar{v}_{\mu}$ CC - All particles Only lepton E_MC (GeV)
- \cdot E_u<500 MeV: the resolution is dominated by the smearing introduced by the Fermi motion of the initial state nucleon and re-interaction of hadrons inside the nucleus
- E_>500 MeV: the improvement in resolution when all particles are detected is significant

Difference in the rates of upward and downward going atm. neutrino events for a 2 Kton year exposure

	2 kton×year						
		Δm_{23}^2 (eV ²)					
	No osci	5×10^{-4}	1×10^{-3}	3.5×10^{-3}	5×10^{-3}		
Muon-like	270 ± 16	206 ± 14	198 ± 14	188 ± 14	182 ± 13		
Downward	102 ± 10	102 ± 10	102 ± 10	98 ± 10	95 ± 10		
Upward	94 ± 10	46 ± 7	46 ± 7	47 ± 7	49 ± 7		
Electron-like	152 ± 12	152 ± 12	152 ± 12	152 ± 12	152 ± 12		
Downward	56 ± 7	56 ± 7	56 ± 7	56 ± 7	56 ± 7		
Upward	48 ± 7	48 ± 7	48 ± 7	48 ± 7	48 ± 7		

Table 1: Predicted downward ($\cos \theta_{zenith} > 0.2$) and upward ($\cos \theta_{zenith} < -0.2$) atmospheric neutrino rates in case no oscillations occur and assuming $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations take place with maximal mixing. Four different Δm^2 values have been considered. Only statistical errors are quoted. As a reference, we also show the total expected rates for both muon and electron-like events.

Quite evident deficit of upward going "muon like" events, for the range of osc. parameters allowed by SK measurements

Atmospheric v events

$$E_v = 370 \text{ MeV}$$
 $E_v = 450 \text{ MeV}$
 $P_{\mu} = 250 \text{ MeV}$
 $T_p = 90 \text{ MeV}$
 $P_e = 200 \text{ MeV}$
 $T_p = 240 \text{ MeV}$

Cosmic ray event containing a hadronic interaction vertex

providing an "Atmospheric neutrino"-like topology

10 m³ test @ LNGS: Run 641 - Evt 14 (Apr. 14th, 2000)

3D reconstruction

Fizyka neutrin słonecznych i z SN

- Double signature for CC events: primary electron track eventually surrounded by low energy secondary tracks (⁴⁰K de-excitation).
- Electron detection threshold = 5 MeV (needed to reduce background contribution and to establish the er direction in elastic scattering).
- Sensitive to ^BB and hep components of the solar neutrino spectrum.

Supernova:

$$\overline{V}_e + {}^{40}Ar \rightarrow {}^{40}Cl^* + e^+$$

(Relatively) High Statistics available and reduced background, depending on the actual energy threshold:

	9 P					0	
T _{thr} (e) = 5 MeV	T_{th}	Events				12	
(limited by background)	(MeV)	Elastic	Fermi	Gamow-Teller	Photons	Neutrons	
	0.0000	2674	1964	1902	1.40×10^{8}	15745	
Event noted for	1.0000	2238	1928	1902	3.83×10^{7}	7243	
Event rates for	2.0000	1826	1792	1868	2.14×10^{6}	3306	
an exposure of	3.0000	1438	1530	1832		1481	
1 Kton year	5.0000	792	730	1453		306	
	5.5000		530	1094			
_	6.0000	540	355	694		140	
<u>Inputs:</u>	6.5000 7.0000	347	$\frac{213}{111}$	504 338		64	
 BP98 v Flux (⁸B) 	7.5000		47	204			
• Ar nuclear shell	8.0000	204	15	106		28	
model calculation	8.5000 9.0000	106	4	45 15			
and measures	9.5000	100		4			
on mirror nucleus	10.000	49		22			
• n meas @ LNGS	8.5						

• γ meas. @LNGS

Table 1: Calculated solar neutrino reactions for an exposure of 1 kton \times year, as a function of the primary electron kinetic energy threshold T_{th} . No oscillation hypothesis

T600 test @ Pv: Run 785 - Evt 4 (July 22nd, 2001)

Wiązka CNGS-poszukiwanie oscylacji $\nu_{\mu}\!\rightarrow\!\nu_{\tau}$

Detector configuration	Process	Expected Rates
S T600 modules	ν _μ CC	32600
Active I Ar: 2.35 ktons	ν _μ CC	652
	v _e CC	262
 5 years of CNGS running 	v _e CC	17
Shared mode	v NC	10600
➡ 4.5 x 10 ¹⁹ p.o.t./year	v NC	243
	v ₇ CC, ∆m ² (eV ²)	
 280 v_z CC expected for 	1 x 10 ^{.3}	31
Δm ² ₂₃ =3 x 10 ⁻³ eV ² and	2 x 10 ⁻³	125
maximai mixing	3 x 10 ⁻³	280
	5 x 10 ⁻³	750

44

$v_{\mu} \rightarrow v_{\tau}$ appearance search summary

T600+2 x T1200 modules (2.35 kton active LAr)

5 year CNGS shared running

(2.25 x 10²⁰ p.o.t.)

τ decay mode	$\begin{array}{c} \text{Signal} \\ \Delta m^2 = \\ 1.6 \times 10^{-9} \text{ eV}^2 \end{array}$	Signal $\Delta m^2 =$ $2.5 \times 10^{-1} \text{ eV}^2$	Signal $\Delta m^2 =$ $3.0 \times 10^{-3} \text{ eV}^2$	Signal $\Delta m^2 =$ $4.0 \times 10^{-4} \text{ eV}^2$	BG
$\tau \rightarrow c$	3.7	9	13	23	0.7
$\tau \rightarrow \rho DIS$	0.6	1.5	2,2	3.9	< 0.1
$\tau > \rho QE$	0.6	1.4	2.0	3.6	< 0.1
Total	4.9	11.9	17.2	30.5	0.7

One half of

full ICARUS

mass

τ→e search: 3D likelihood

- Barrist Weither - Contract Manager

A very simple analysis

- Analysis based on 3 dimensional likelihood
 - E_{visible}, P_T^{mins}, ρ₁=P_T^{lop}/(P_T^{lop+} P_T^{hod}+P_T^{mins})
 - Exploit correlation between variables
 - Two functions built:
 - L_e ([Evisible, P₁^{mise}, p_i]) (signal)
 - L_E ([Evisible, P₁^{mins}, ρ]) (n, CC
 - background)
 - Discrimination given by

 $in\lambda = L([Evisible, P_T]) = L_s / L_s$

Poszukiwanie rozpadów protonu

p→*K*⁺*v* decav kinematics

Invariant Mass (GeV)

Cuts	$p \rightsquigarrow K^{q} \bar{v}$	ν_{e} CC	$\bar{\nu}_e \mathbf{CC} $	$ \nu_{\mu} $ CC	$ ar{ u}_{\mu} \mathrm{CC} $	ν NC	$\bar{\nu} { m NC}$	
Oae Kaon	96.75A	308	36	871	146	282	ну. 11	
$N \alpha \pi^{ij}$	96.75%	143	14	404	56	138	25	
No positrons	96.75%	Û	0	400	- 56	138	25	
No muons	96.75係	0	0	Û	()	138	25	
No charged plous	96.75 %	Û	Û	0	Û	57	9	
Total Energy $< 0.8 { m ~GeV}$	96.75%	0	0	0	(1	1	0	

Particle Physics Seminar - CERN - February 26, 2002

Exposure: 1000 kton x year