Neutrina – takie lekkie, a takie ważne

Agnieszka Zalewska Instytut Fizyki Jądrowej PAN im. H.Niewodniczańskiego

Colloquium w Toruniu, 19.01.2006

Średnio 3 prace dziennie ze słowem "neutrino" w tytule

Czym są neutrina i skąd się biorą?

Oscylacje neutrin

Ile waży neutrino?

Cząstka Diraca czy Majorany?

Związki z astronomią i astrofizyką

Neutrina w służbie geofizyki

A co w Polsce?

Narodziny neutrina

1930 – Wolfgang Pauli postuluje istnienie nowej, neutralnej cząstki, aby ratować prawo zachowania energii i krętu w jądrowych rozpadach β

"Zrobiłem straszną rzecz. Zaproponowałem cząstkę, która nie może być wykryta. To jest coś, czego teoretyk nie powinien nigdy robić" Wolfgang Pauli

Toruń, 19.01.2006

Czym są neutrina?

W Modelu Standardowym to elementarne cząstki materii

są neutralnymi leptonami, które oddziałują wyłącznie słabo np. średnia droga na oddziaływanie neutrin z rozpadu β neutronu w wodzie jest rzędu kilku tysięcy lat świetlnych
drugie po fotonach, jeśli idzie o częstość występowania we Wszechświecie
istnieja trzy rodzaje

 istnieją trzy rodzaje ("zapachy") lekkich neutrin wynik bardzo dokładnych pomiarów w eksperymentach przy zderzaczu LEP

Neutrina kosmologiczne, słoneczne, z wybuchów Supernowych, z rozpadów β naturalnych pierwiastków promieniotwórczych (w tym neutrina reaktorowe), atmosferyczne i akceleratorowe oraz skrajniēowysokiem energii

Oscylacje neutrin

Przy założeniu dwu stanów zapachowych neutrin α i β oraz dwu stanów masowych 1 i 2, prawdopodobieństwo przejścia α w β w próżni:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(1.27 \Delta m^2 \frac{L}{E} \right)$$

gdzie $\Delta m^2 = m_2^2 - m_1^2$ wyrażone jest w [eV⁻²], L w [km], a E w [GeV]

 Δm^2 i θ (kąt mieszania stanów 1 i 2) to parametry teoretyczne, L (długość bazy pomiarowej) i E (energia neutrin) są dobierane eksperymentalnie

Wpływ materii: wzory na prawdopodobieństwa takie same jak dla oscylacji w próżni, ale efektywne masy i efektywne kąty mieszania - na razie ważny tylko w przypadku neutrin słonecznych

Oscylacje neutrin

Przykłady:

$$\begin{split} L &\sim 1 \text{ km}, \quad E_v \sim 1 \text{ GeV} \Rightarrow \Delta m^2 \sim \text{ eV}^2 \text{ (eksp. NOMAD i CHORUS)} \\ L &\sim 10^4 \text{ km}, E_v \sim 100 \text{ MeV} \Rightarrow \Delta m^2 \sim 10^{-5} \text{ eV}^2 (v_{atm} \text{ niskiej en. i średnica Ziemi)} \\ L &\sim 10^3 \text{ km}, E_v \sim 1 \text{ GeV} \Rightarrow \Delta m^2 \sim 10^{-3} \text{ eV}^2 (v_{accel} \text{ i baza L rzędu kilkuset km)} \\ L &\sim 10^8 \text{ km}, E_v \sim 10 \text{ MeV} \Rightarrow \Delta m^2 \sim 10^{-10} \text{ eV}^2 (v_{slon} \text{ i odległość Słońce-Ziemia)} \end{split}$$

Oscylacje neutrin słonecznych i atmosferycznych są całkiem nieźle opisywane przez ten prosty model z udziałem dwu stanów zapachowych i dwu stanów masowych

Aspekty eksperymentalne

Eksperymenty poszukujące sygnału β w wiązce α :

$$P(\nu_{\alpha} \to \nu_{\beta}) \ge 0$$

Eksperymenty mierzące osłabienie wiązki α :

$$P(\nu_{\alpha} \to \nu_{\alpha}) \leq 1$$

Liczba obserwowanych przypadków N_{obs} oddziaływań neutrin jest proporcjonalna do fizycznego przekroju czynnego na oddziaływanie σ [cm²], wielkości strumienia neutrin Φ [cm⁻²] oraz liczby atomów tarczy N na ich drodze:

 $N_{obs} \approx \sigma * \Phi * N$ ($\sigma < 10^{-40} \text{ cm}^{-2} \text{ dla energii rzędu MeV}$)

→ Potrzebne jak najsilniejsze źródło neutrin i wielki oraz wydajny detektor; optymalizacja eksperymentów neutrinowych polega na łącznym traktowaniu źródła neutrin, bazy pomiarowej L i detektora Toruń, 19.01.2006

Pomiary oscylacji

1998-2002 wielkie odkrycia

w eksperymentach SuperKamiokande (v atmosferyczne) , K2K (akceleratorowe), SNO (v słoneczne) i KamLAND (v reaktorowe) 2003

początek precyzyjnych pomiarów w badaniach oscylacji neutrin

SupenKamiokande

Neutrina atmosferyczne

"Oczy" SuperKamiokande

 $V_{\mu}(V_{e}) + n \rightarrow \mu^{-}(e^{-}) + p$

 $\overline{V}_{\mu}(\overline{V}_{e}) + p \rightarrow \mu^{+}(e^{+}) + n$

Pomiar energii oraz kierunku μ i e, łącznie ok. 20000 oddziaływań neutrin atmosferycznych, dane zebrane w latach 1996-2005 (SKI – do 2001, wypadek w 2001, SKII – od grudnia 2002) Toruh, 19.01.2006

SuperK – v_{atm} , rozkłady kąta zenitalnego

SuperKamiokande – zależność L/E

Wszystkie pomiary SuperK wskazują na oscylacje $v_{\mu} \leftrightarrow v_{\tau}$

Toruń, 19.01.2006

Neutrina akceleratorowe

W przypadku neutrin akceleratorowych rolę promieni kosmicznych pełnią protony przyspieszone w akceleratorze Obecnie wykorzystywane są tylko v_{μ} z rozpadów π

→ Lepsza kontrola strumienia i energii neutrin

Pierwsza wiązka $\nu_{\mu}-$ 1961 rok $_{14}$

Eksperyment K2K

pierwszy eksperyment akceleratorowy z długą bazą pomiarową

K2K – zasada i wyniki pomiaru

Pomiar pędów i kierunków mionów w bliskim detektorze w KEK → strumień neutrin i rozkład energii neutrin w bliskim detektorze

→ przewidywania strumienia i rozkładu energii w det. SuperK

Pomiar oddziaływań neutrin w detektorze SuperK

→ wnioski na temat oscylacji na podstawie zanikania strumienia i kształtu widma energii neutrin Zaobserwowano 107 przypadków oddziaływań ν_{μ} wobec oczekiwanych 149.7

→ Zgodność wyników z SuperKamiokande

Toruń, 19.01.2006

Neutrina słoneczne

Większość neutrin słonecznych pochodzi z reakcji pp $4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu_{e} + 2\gamma$ Eksperymenty (od 1969 r) mierzą reakcje: $\nu_{e} + n \rightarrow p + e^{-}$ wszystkie W szczególności: $\nu_{e} + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^{-}$ $\nu_{e} + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^{-}$ $\nu_{\ell} + e^{-} \rightarrow \nu_{\ell} + e^{-}$ SuperK

• Słoneczne v_e powstają w samym środku Słońca

- Przez ponad 30 lat obserwowano na Ziemi niedobór $\nu_{\rm ston}$ względem przewidywań modelu Słońca (od 40% do blisko 70%)
- Częściowe wyjaśnienie dzięki pomiarom SuperK, całkowite SNO Toruń, 19.01.2006

SuperKamiokande – zależność roczna $\Phi(v_{ston})$

Roczne zmiany wielkości strumienia neutrin słonecznych są zgodne z rocznymi zmianami odległości Ziemia-Słońce → To efekty masowe przy przejściu neutrin z wnętrza do powierzchnio Słońca decydują o zmianie zapachu neutrin

Procesy mierzone w eksperymencie SNO

tylko ve dobry pomiar energii v_e, mała czułość na kierunek 1-1/3cos0 E_{th}=1.4MeV

wszystkie rodzaje neutrin, ten sam przekrój czynny, pomiar całkowitego strumienia neutrin borowych $E_{th}=2.2MeV$

mała liczba przypadków, głównie czuły na ve, duża czułość na kierunek reakcja mierzona w SuperK

Trzy fazy eksperymentu (obecnie trzecia) – cele: jak najlepsza wydajność rejestrazjó neutronów i jak najlepsze odróżnienie reakcji NC

SNO - wyniki

Całkowity strumień neutrin zgodny z przewidywaniami Modelu Słońca, niedobór v_e spowodowany ich przejściem w $v_{\mu,\tau}$ wrdród zwó z wnętrza do powierzchni Słońca 20

Antyneutrina z reaktorów

Pierwsza obserwacja oddziaływań (anty)neutrin w eksperymencie Reinesa-Cowana (1955) przy siłowni jądrowej

$$\overline{V}_e + p \rightarrow e^+ + n$$

Duża siłownia jądrowa daje 6x10²⁰ anty-v/sek i 3 GW mocy cieplnej

Detector at the Savannah River nuclear reactor

"We are happy to inform you [Pauli] that we have definetly detected neutrinos"

KamLAND – rozkład energii anty-v_e i drogi L

KamLand – strumień i widmo energii

Osłabienie strumienia neutrin i widmo energii wykluczają brak oscylacji na poziomie ufności 99.99995% 258 zaobserwowanych oddziaływań 365.2 \pm 23.7 oczekiwanych 17.8 \pm 7.3 zdarzeń tła

KamLand – zależność strumienia od L/E

Bardzo dobra zgodność wyników dla neutrin słonecznych i antyneutrin reaktorowych: $\Delta m_{st}^2 \sim 8 \times 10^{-5} eV^{-2}$, kąt mieszania duży, ale nie maksymalny Toruń, 19.01.2006

Wiemy jednak, że są trzy rodzaje neutrin

Bardzo ważne pytania

Kąt θ_{23} = 45° (maksymalny), θ_{12} = 33° (duży), θ_{13} < 10° (mały), inaczej niż dla kwarków

→ Czy to przejaw jakiejś nowej symetrii przyrody? $\Delta m_{23}^2 \approx 2.5 \times 10^{-3} \text{ eV}^2$, $\Delta m_{12}^2 \approx 8 \times 10^{-5} \text{ eV}^2$, $|\Delta m_{13}^2| = |\Delta m_{23}^2 - \Delta m_{12}^2|$

Czy symetria CP w sektorze leptonowym jest
 zachowana czy jest łamana?
 Pomiar możliwy, jeśli θ₁₃ nie jest zbyt mały
 Bardzo ważne pytanie, bo łamanie symetrii CP dla
 kwarków nie wystarcza dla wyjaśnienia asymetrii między
 materią i antymaterią

Toruń, 19.01.2006

"Efekt LNSD" – dodatkowy obszar oscylacji?

Trzeci obszar na rozkładzie parametrów oscylacji ∆m² ≅1eV², kąt mieszania bardzo mały

Trzy skale dla różnicy kwadratów mas →cztery stany zapachowe neutrin

Problem: istnieją tylko trzy stany zapachowe lekkich neutrin (wynik z LEP-u) →czwarte neutrino jakieś inne, nazwane "sterylnym"

Sprawdzenie w eksperymencie MiniBoone, pierwsze wyniki mają być ogłoszone wkrótce Toruń, 19.01.2006 Jeśli potw

Przyszły program badań oscylacji

Potrzebne bardzo precyzyjne pomiary

Pierwsza generacja eksperymentów (rozpoczęte lub bliskie realizacji)

- lata 2005-2010:
- Eksperyment MINOS na wiązce NuMi
- Eksperyment OPERA na wiazce CNGS
- Eksperymenty Borexino (stoneczny) i Double-CHOOZ (reaktorowy)

Druga generacja eksperymentów (w trakcie zatwierdzania i finalnych dyskusji) – lata 2010-2015:

- Eksperyment T2K w Japonii na super-wiązce z Tokai do Kamioki
- Eksperyment NOvA na wiązce (potem super-wiązce) NuMi
- Eksperymenty reaktorowe nowej generacji

Trzecia generacja eksperymentów (w realizacji tylko programy R&D) - po 2015:

- Eksperymenty na wiązkach z fabryki neutrin lub wiązkach β
- Gigantyczne detektory, bardzo długie bazy pomiarowe Toruń, 19.01.2006

Projekty akceleratorowe NuMi i CNGS

W realizacji:

♦ NuMi – wiązka neutrin z FNAL do detektora MINOS w kopalni Soudan, start in 2005, pomiar osłabienia wiązki v_{μ} w oparciu o bliski i daleki detektor → lepszy pomiar parametrów w obszarze v_{atm}

 CNGS - wiązka z CERN do LNGS, daleki detektor OPERA (i mały detektor ICARUS), start w 2006, poszukiwania oddziaływań ν_τ, pochodzących z oscylacji ν_μ

Toruń, 19.01.2006

Przyszłe intensywne źródła neutrin

Superbeams

Superwiązki

-konwencjonalne wiązki dużej intensywności, Neutrina z rozpadów π

Neutrino Factories

Wiązki β

Toruń, 19.01.2006

Fabryki neutrin - nowy typ akceleratora, neutrina z rozpadów μ

Nowy pomysł (2002 rok) -przyspieszać ⁶He (źródło antyneutrin) i ¹⁸Ne (źródło neutrin) ₃₀

Pierwsza superwiązka

T2K - etap 2

Masy neutrin - czego uczą oscylacje

Najcięższe z neutrin musi mieć masę większą niż 50 meV
 Dwa ważne pytania:
 Gdzie jest zero na tej skali masy?
 Czy hierarchia jest normalna czy odwrócona względem Δm²_{atm}

Jak można zmierzyć masy neutrin?

Bezpośredni pomiar masy:

niepotrzebne są żadne dodatkowe założenia

 -- w oparciu o analizę kinematyczną słabych rozpadów (pomiar naładowanych produktów rozpadu i zastosowanie prawa zachowania energii i pędu)

 -- z czasu przelotu neutrin z wybuchu gwiazdy supernowej (Nagroda Nobla w 2002 roku za obserwację neutrin z wybuchu supernowej 1987A – początek astronomii neutrinowej)

W oparciu o pomiary kosmologiczne: bardzo czuła metoda, ale zależna od modelu

W oparciu o podwójny bezneutrinowy rozpad β: bardzo czuła metoda, ale neutrino musi być cząstką Majorany

Toruń, 19.01.2006

Pomiar masy ve w oparciu o rozpad β trytu

Obecne ograniczenie $m(v_e) < 2.2 \text{ eV}$ – eksperymenty Mainz i Troitsk W przygotowaniu eksperyment KATRIN (start w 2008 roku), który ma osiągnąć 0.2 eV 10-krotne zmniejszenie górnej granicy masy oznacza 100-krotnie mniej przypodków orzowieksza

Kosmologiczne ograniczenia na masę neutrin

Authors	Σm _v /eV (limit 95%CL)	Data / Priors
Spergel et al. (WMAP) 2003 [astro-ph/0302209]	0.69	WMAP, CMB, 2dF, σ ₈ , HST
Hannestad 2003 [astro-ph/0303076]	1.01	WMAP, CMB, 2dF, HST
Tegmark et al. 2003 [astro-ph/0310723]	1.8	WMAP, SDSS
Barger et al. 2003 [hep-ph/0312065]	0.75	WMAP, CMB, 2dF, SDSS, HST
Crotty et al. 2004 [hep-ph/0402049]	1.0 0.6	WMAP, CMB, 2dF, SDSS & HST, SN
Hannestad 2004 [hep-ph/0409108]	0.65	WMAP, SDSS, SN Ia gold sample, Ly- α data from Keck sample
Seljak et al. 2004 [astro-ph/0407372]	0.42	WMAP, SDSS, Bias, Ly-α data from SDSS sample
		Halzen, 2005

Podwójny bezneutrinowy rozpad beta

Dla niektórych jąder parzysto-parzystych

Podwójny rozpad β

$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} M^{0\nu} ^2 \langle m_\nu \rangle^2$								
$ M^{0\nu} ^2$ Element macierzy jądrowej								
$\langle m_{ u} angle^2$ efektywna masa neutrina $\langle m_{ u} angle = \sum_k \phi_k m_k U_{e,k}^2$								
	Isotope	$T_{1/2}^{0\nu}(y)$	References	$\langle m_{\nu} \rangle ~(\mathrm{eV})$				
-	⁴⁸ Ca	$> 1.4 \cdot 10^{22}$	[[77]]	< 7.2 - 44.7				
nucl-ex/0410029	⁷⁶ Ge	$> 1.9 \cdot 10^{25}$	[[40]]	< 0.35				
	^{82}Se	$> 2.7 \cdot 10^{22} (68\%)$	[[43]]	< 5.0				
	¹⁰⁰ Mo	$> 5.5 \cdot 10^{22}$	[[83]]	< 2.1				
Ostateczny cel eksperymentów: czułość ~10 meV	¹¹⁶ Cd	$>1.7\cdot10^{23}$	[[89]]	< 1.7				
	¹²⁸ Te	$> 7.7 \cdot 10^{24}$	[[58]]	< 1.0 - 4.4				
	¹³⁰ Te	$> 5.5 \cdot 10^{23}$	[[85]]	< 0.37 - 1.9				
	¹³⁴ Xe	$> 5.8 \cdot 10^{22}$	[[61]]	< 17.0 - 27.0				
	¹³⁶ Xe	$> 1.2\cdot 10^{24}$	[[61]]	< 0.8 - 2.4				
Bardzo liczne	¹⁵⁰ Nd	$>1.2\cdot10^{21}$	[[51]]	< 3.0				
i wyrafinowane	⁷⁶ Ge	$(0.69 - 4.18) \cdot 10^{25}$	[[78]]	0.24 - 0.58				
projekty Toruń, 19.01.2006	76 Ge	$1.19 \cdot 10^{25}$	[[78]]	0.44				
	^{82}Se	$> 1.4 \cdot 10^{23}$	[[82]]	< 1.5 - 3.1				
	¹⁰⁰ Mo	$> 3.1 \cdot 10^{23}$	[[82]]	< 0.8 - 1.2				
	¹³⁰ Te	$> 7.5 \cdot 10^{23}$	[[86]]	< 0.3 - 1.6				

Eksperyment Moskwa-Heidelberg - sygnał Ovßß?

Nowa publikacja w 2004 roku w oparciu o dane z okresu 1990-2003 Klapdor-Kleingrothaus Phys. Lett. B586 (2004) 198

Maximum przy energii 2039 keV

T_{1/2} = 0.6-8.4x10²⁵lat

 \rightarrow m_v = 0.17-0.63 eV

Wynik musi być zweryfikowany przez inny eksperyment, np. eksperyment NEMO3 powinien za parę lat osiągnąć wystarczającą czułość

Neutrina skrajnie wysokich energii

Czy istnieją? Skąd pochodzą?

U podstaw poszukiwań znajduje się obserwacja promieni kosmicznych skrajnie wysokich energii w eksperymencie AGASA

Jest to część programu eksperymentalnego realizowanego przyu 10²⁴ użyciu wielkich detektorów (objętość 1 km³), bazujących na detekcji promieniowania Czerenkowa w lodzie 10²³

Amanda, Icecube lub głęboko w morzu czy jeziorze Antares, Nestor, (pierwszy był Baikal) Toruń, 19.01.2006

Podwodne teleskopy neutrinowe

Blisko Tulonu, na głębokości 2400 m, udane testy fragmentu detektora

Geoneutrina w KamLAND

• Antineutrina z ²³⁸U, ²³²Th and ⁴⁰K dają możliwość zajrzenia do wnętrza Ziemi i zbadania mechanizmu generacji energii

 KamLAND jest pierwszym detektorem dostatecznie czułym, aby zmierzyć geoneutrina z tych rozpadów

Obecne ograniczenie z KamLAND-u na ciepło z rozpadów radioaktywnych < 60 TW (oszacowanie 31+-1 TW)

T.Araki et al., Nature 436 (2005) 467

Polacy w badaniach neutrin

Obecnie:

D.Kiełczewska + doktoranci w eksperymencie SuperKamiokande

M.Wójcik + doktoranci w eksperymentach Gallex i Borexino

Ponad 20-osobowa polska grupa w eksperymencie ICARUS

 \rightarrow polska grupa neutrinowa

Eksperyment ICARUS

(Imaging Cosmic And Rare Underground Signals)

Problematyka fizyczna:

Badanie oddziaływań neutrin słonecznych, atmosferycznych, z wybuchu Supernowej i z wiązki akceleratorowej CNGS oraz poszukiwanie rozpadu protonu przy użyciu wielkich komór TPC wypełnionych ciekłym argonem.

Dwa etapy:

T600 - detektor o całkowitej masie 600 ton, instalacja w Gran Sasso rozpoczęta

Detektor o całkowitej masie kilku (3-10) kton – R&D

T600-dane z testów pierwszej komory TPC

Nowatorska technika eksperymentalna: całkowicie elektroniczny detektor, dający trójwymiarowy obraz przypadku oddziaływania o jakości porównywalnej z obrazami z komór pęcherzykowych oraz bardzo dobry pomiar energii w oparciu o dE/dx na drutach.

Przykładowy przypadek:

A gdyby zamiast 1Mtony wody...

Toruń, 19.01.2006

Gdzie go umieścić? Może dałoby się w Polsce?

Possible European CERN-LBL sites

Naturalne tio promieniotwórcze

 Pomiary naturalnego tła promieniotwórczego: zapoczątkowane przez J.Kisiela i J.Dordę z U.Śl, dokładna analiza próbek w IFJ (J.W.Mietelski, E.Tomankiewicz, S.Grabowska)

Tabela 1. Wyniki stężenia substancji radioaktywnych w badanych próbkach soli z kopalni Sieroszowice.

Radionuk	lid 1	2	3	4				
	[Bq/kg]							
238U	0.40 ± 0.06	0.34 ± 0.05	0.10 ± 0.02	0.14 ± 0.02				
234U	0.38±0.06	0.33±0.05	0.14 ± 0.02	0.14 ± 0.02				
²³⁰ Th	0.29±0.05	0.34 ± 0.06	0.10±0.03	0.19 ± 0.03				
Średnio s	z. U 0.3	57 0.337	0.113	0.157				
²³² Th	0.09±0.03	0.08 ± 0.02	0.03 ± 0.02	0.11 ± 0.02				
235U	0.015 ± 0.006	0.015±0.007	<0.005 0.008±0	0.004				
⁴⁰ K	nd	nd	nd	2.1±0.3				
\rightarrow Pomiary sa kontynuowane, ale już widać, że tło jest								
bardzo niskie Torun, 19.01.2006								

Wielki Czwartek 2005 w Sieroszowicach

Komora solna na głebokości 950 m od powierzchni ziemi, kubatura (15x15x100) m³

Zamiast podsumowania

1 eV przerwy energetycznej w krzemie stanowi podstawę współczesnej elektroniki, informatyki i telekomunikacji

Czy maleńka masa neutrin (prawdopodobnie sporo mniejsza niż 1 eV) jest przejawem istnienia cząstek o masach niedostępnych badaniom akceleratorowym i doprowadzi nas do poznania nowych praw przyrody?