The LAGUNA project (Large Apparatus studying Grand Unification and Neutrino Astrophysics)

> Agnieszka Zalewska – IFJ PAN, Poland (on behalf of Andre Rubbia, ETH Zürich)

ASPERA workshop "Linking of existing infrastructures" Berlin, 25.10.2007

Characterization of the LAGUNA project

Answering the asked questions

What is LAGUNA?

The European project "Large Apparatus studying Grand Unification and Neutrino Astrophysics" aiming at defining and realizing this research programme in Europe.

It includes the majority of European groups interested in the construction of the very massive detector ($10^5 - 10^6$ tons) realized in one of the three technologies using liquids: water, liquid argon and liquid scintillator.

No one of the existing European underground laboratories is able to host such a huge detector \rightarrow a new large underground infrastructure is needed.

The group applied for the RI Design Study in the framework of FP7 (2.05.2007) with the main goal to study possible localizations of the future laboratory together with further R&D for the proposed detector technologies.

The ApPEC roadmap, January 2007

	Field/ Experiments	Cost scale (M4)	Desirable start of	Remarks
	Dork Matter Security		construction	2 armanimants (different
	Low background experiments with 1-ton mass	60-100 M€	2011-2013	nuclei, different techniques), e.g. 1 bolometric, 1 noble liquid; more than 2 worldwide.
	Proton decay and low energy neutrino astronomy: Large infrastructure for p- decay and v astronomy on the 100kt-1Mton scale	400-800 M€	2011-2013	 multi-purpose 3 different techniques; large synergy between them. needs huge new excavation expenditures likely also after 2015 worldwide sharing possibly also accelerator neutrinos in long baseline
				experiments
	The high energy universe: <u>Gamma rays:</u> Cherenkov Telescope Array CIA	100 M€ (South) 50 M€ (North)	first site in 2010	Physics potential well defined by rich physics from present gamma experiments
	Auger North	85 M€	2009	Confirmation of physics potential from Auger South results expected in 2007
	<u>Neutrinos:</u> KM3NeT	300 M€	2011	FP6 design study. Confirmation of physics potential from IceCube and gamma ray telescopes expected in 2008-2010
Berlin	Gravitational Waves: Third generation interferometer	250-300 M€	Civil engineering 2012	Conceived as underground laboratory

The ApPEC roadmap, January 2007

"We recommend that a new large European infrastructure is put forward, as a future international multi-purpose facility on the 100'000-1'000'000 tons scale for improved studies of proton decay and of low-energy neutrinos from astrophysical origin. The three detection techniques being studied for such large detectors in Europe, Water-Cherenkov, Liquid Scintillator and Liquid Argon, should be evaluated in the context of a common design study, which should also address the underground infrastructure, and the possibility of an eventual detection of future accelerator neutrino beams. This design study should take into account worldwide efforts and converge, on a time scale of 2010, to a common proposal."

1. Search for the proton decay

2. Studies of the low energy neutrinos from astrophysical sources (SN explosion, Sun, atmosheric neutrinos, relic SN neutrinos in our galaxy) and of the geo-neutrinos

3. Studies of the neutrino properties based on accelarator neutrino beams

Detector concepts

Possible localizations of the future large underground laboratory

COLLABORATIVE PROJECT

2.05.2007

Design Study

FP7-INFRASTRUCTURES-2007-1

<u>Proposal title (max 200 characters)</u>	Design of a pan-European Infrastructure for Large Apparatus studying Grand Unification and Neutrino Astrophysics
Proposal acronym	<u>LAGUNA</u>
<u>Type of funding scheme</u>	<u>RI design study implemented as</u> <u>Collaborative Project</u>
Work programme topics addressed	Deep underground science, particle physics, astroparticle physics
Name of the coordinating person	Prof. André Rubbia

List of participants:	1	1	
Participant no.	Participant organisation name	Country	
1 ETH Zurich	Swiss Federal Institute of	Switzerland	
1. ETTI Zuiki	Technology Zurich	Switzenand	
2. U-Bern	University of Bern	Switzerland	
3. U-Jyväskylä	University of Jyväskylä	Finland	
4. U-Oulu	University of Oulu	Finland	
5. Rockplan	Kalliosuunnittelu Oy Rockplan Ltd	Finland	
	Commissariat à l'Energie Atomique		
6. CEA/ DSM/ DAPNIA	/Direction des Sciences de la	France	
	Matière		
	Institut National de Physique		
7. IN2P3	Nucléaire et de Physique des	France	
	Particules (CNRS/IN2P3)		
8. MPG	Max-Planck-Gesellschaft zur	Germany	
	Förderung der Wissenschaften e.V.		
9. TUM	Technische Universität München	Germany	
10. U-Hamburg	Universität Hamburg	Germany	
	H.Niewodniczanski Institute of		
11. IFJ PAN	Nuclear Physics of the Polish	Poland	
	Academy of Sciences, Krakow		
12. IPI	A.Softan Institute for Nuclear	Poland	
	Studies		
13. US	3. US University of Silesia		
14. UWr	Wroclaw University	Poland	
	KGHM CUPRUM	Poland	
15. KGHM CUPRUM	Ltd Research and Development		
	Centre		
	Mineral and Energy Economy		
16. IGSM1E PAN	Research Institute of the Polish	Poland	
	Academy of Sciences		
17. LSC	Laboratorio Subterraneo de	Spain	
10 UCD	Lantranc	Casia	
18. UGK	University of Granada	Spain	
19. UDUK	University of Durham	United Kingdom	
20. U-Sheffield	The University of Sheffield	United Kingdom	
21. Technodyne	Technodyne International Ltd	United Kingdom	
22. ETL	Electron Tubes	United Kingdom	
23. U-Aarhus	University of Aarhus	Denmark	
24. AGT	AGT Ingegneria Srl, Perugia	Italy	

Berlin, 25.

Work package no.	Work package title	Type of activity	Lead participant no.	Person- months	Start month	End month
WP1	Management, coordination and assessment	MGT	ETHZ	52	1	36
WP2	Underground Infrastructures and Engineering	RTD	U-Oulu	221	1	35
WP3	Tank Infrastructure and Liquid Handling	RTD	TUM	249	1	35
WP4	Tank Instrumentation and Data Handling	RTD	IN2P3	439	1	35
WP5	Safety and environmental issues	RTD	U-Sheffield	65	1	35
WP6	Science Impact and Outreach	RTD	IFJ PAN	454	1	35
	TOTAL			1480		

Berlin, 25.10.2007

Localization of the future laboratory

Very preliminary sites vs experiments

		Mt Water Cerenkov	50 kt Liquid Scintillator	100 kt Liquid Argon
Fréjus	Tunnel / hard rock	$\sqrt{\sqrt{2}}$		
Gran Sasso	Tunnel / soft rock	\checkmark		\checkmark
Canfranc	Tunnel	?	?	?
Pyhäsalmi	Mine / hard rock	\checkmark	$\sqrt{\sqrt{2}}$	
Boulby	Mine / salt (potash)	?	?	?
Polkowice - Sieroszowice	Mine / salt & rock	\checkmark		$\sqrt{\sqrt{2}}$
Green fields	Own shaft / Hard rock	\checkmark	\checkmark	$\sqrt{\sqrt{2}}$

√√√ primary interest; √√ probably; √ unlikely; ? unknown

Bedrock zones in the Earth

- Red: very old bedrock, hard crystalline rock: usually very good
- Green: mobile belts (mountains etc), hard rock: fair/variable
- White: sedimentary covers (soft rock): often bad
- Local variations within each zone

Nuclear reactor background

- Relevant mostly for LENA
- Reactor fluxes estimated globally
- Marine reactors irrelevant?

Reactor electron anti-neutrino flux density

Prediction for 2015

	Frejus
	Canfranc
	Boulby
10,00	 Kamioka
9e+09	Sudbury
8e+08	 Soudan
7e+08	Pylos
5e+08	
4e+08	
3e+08	

Location

Pyhäsalmi	40
Gran Sasso	54
Frejus	175
Canfranc	196
Boulby	190
Kamioka	408
Sudbury	100
Soudan	33
Pylos	12

2005

v (10^a 1/m² s)

Background due to natural radioactivity

In situ measurements: GS, Boulby, Sieroszowice Integral background counting rates

Energy [keV]	Gran Sasso	Boulby	Sieroszowice
50-2700	57.68 (0.05)	17.00 (0.01)	2.30 (0.02)

Neutrinos from β beam – MEMPHYS

- Acceleration of ⁶He nuclei (source of antineutrinos) and of ¹⁸Ne nuclei (source of neutrinos), R&D in the framework of EURISOL DS. (FP6)
- ...But a small obstacle (worth ~1 billion CHF) the programme requires a serious intervention into the CERN accelerator chain, also problems with poor knowledge of low energy neutrino cross-sections

Outside Europe: Japan – T2K phase II (?)

Outside Europe: USA - DUSEL

DUSEL – Deep Underground Science and Engineering Laboratory

Very rich interdisciplinary programme – from fundamental physics, through biology and egineering studies to the education and outreach.

