The LAGUNA project (Large Apparatus studying Grand Unification and Neutrino Astrophysics)

Agnieszka Zalewska – IFJ PAN, Poland Zakopane, 21.06.2007

What is LAGUNA

Detector concepts

Research program

Localization of the future large European laboratory

What happens outside Europe?

What is LAGUNA?

The European project "Large Apparatus studying Grand Unification and Neutrino Astrophysics" aiming at defining and realizing this research programme in Europe.

It includes the majority of European groups interested in the construction of the very massive detector (10⁵ – 10⁶ tons) realized in one of the three technologies using liquids: water, liquid argon and liquid scintillator.

No one of the existing European underground laboratories is able to host such a huge detector → a new large underground infrastructure is needed.

The group applied for the RI Design Study in the framework of FP7 (2.05.2007) with the main goal to study possible localizations of the future laboratory together with further R&D for the proposed detector technologies.

The ApPEC roadmap, January 2007

Field/ Experiments	Cost scale (M	Desirable start of	Remarks
2.14.11.11.11.11	(212-4)	construction	
Dark Matter Search:			2 experiments (different
Low background	60-100 M€	2011-2013	nuclei, different techniques),
experiments with 1-ton			e.g. 1 bolometric, 1 noble
mass			liquid; more than 2 worldwide.
Proton decay and low			- multi-purpose
energy neutrino			- 3 different techniques;
astronomy:			large synergy between them.
Large infrastructure for p-	400-800 M€	2011-2013	- needs huge new excavation
decay and v astronomy on			- expenditures likely also
the 100kt-1Mton scale			after 2015
			worldwide sharing
			- possibly also
			accelerator neutrinos
			in long baseline
			experiments
The high energy universe:			
Gamma rays:			
Cherenkov Telescope Array	100 M€ (South)	first site	Physics potential well
CTA	50 M€ (North)	in 2010	defined by rich physics from
Channel Carmin Barre			present gamma experiments
Charged Cosmic Rays: Auger North	85 M€	2009	Confirmation of physics
Auger North	as wie	2009	potential from Auger South
			results expected in 2007
Neutrinos:			
KM3NeT	300 M€	2011	FP6 design study.
			Confirmation of physics
			potential from IceCube and
			gamma ray telescopes
Gravitational Waves:		Civil	expected in 2008-2010
Third generation	250-300 M€	engineering	Conceived as underground
interferometer	200-300 Me	2012	laboratory

Zakopaı

The ApPEC roadmap, January 2007

"We recommend that a new large European infrastructure is put forward, as a future international multi-purpose facility on the 100'000-1'000'000 tons scale for improved studies of proton decay and of low-energy neutrinos from astrophysical origin. The three detection techniques being studied for such large detectors in Europe, Water-Cherenkov, Liquid Scintillator and Liquid Argon, should be evaluated in the context of a common design study, which should also address the underground infrastructure, and the possibility of an eventual detection of future accelerator neutrino beams. This design study should take into account worldwide efforts and converge, on a time scale of 2010, to a common proposal."

Zakopane, 21.06.2007

COLLABORATIVE PROJECT

2.05.2007

Design Study

FP7-INFRASTRUCTURES-2007-1

Proposal title (max 200 characters)	Design of a pan-European Infrastructure for Large Apparatus studying Grand Unification and Neutrino Astrophysics
<u>Proposal acronym</u>	<u>LAGUNA</u>
Type of funding scheme	RI design study implemented as Collaborative Project
Work programme topics addressed	Deep underground science, particle physics, astroparticle physics
Name of the coordinating person	Prof. André Rubbia
Zakopane, 21.06.2007	

List of participants:

Participant no.	Participant organisation name	Country	
-	Swiss Federal Institute of	1	
1. ETH Zurich	Technology Zurich	Switzerland	
2. U-Bern	University of Bern	Switzerland	
3. U-Jyväskylä	University of Jyväskylä	Finland	
4. U-Oulu	University of Oulu	Finland	
5. Rockplan	Kalliosuunnittelu Oy Rockplan Ltd	Finland	
6. CEA/ DSM/ DAPNIA	Commissariat à l'Energie Atomique /Direction des Sciences de la Matière	France	
7. IN2P3	Institut National de Physique Nucléaire et de Physique des Particules (CNRS/IN2P3)	France	
8. MPG	Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.	Germany	
9. TUM	Technische Universität München	Germany	
10. U-Hamburg	Universität Hamburg	Germany	
11. IFJ PAN	H.Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences, Krakow	Poland	
12. IPJ	12. IPJ A.Sołtan Institute for Nuclear Studies		
13. US	University of Silesia	Poland	
14. UWr	Wroclaw University	Poland	
15. KGHM CUPRUM Ltd Research and Development Centre		Poland	
16. IGSMiE PAN	Mineral and Energy Economy 6. IGSMiE PAN Research Institute of the Polish Academy of Sciences		
17. LSC	Laboratorio Subterraneo de Canfranc	Spain	
18. UGR	University of Granada	Spain	
19. UDUR	University of Durham	United Kingdom	
20. U-Sheffield	The University of Sheffield	United Kingdom	
21. Technodyne	Technodyne International Ltd	United Kingdom	
22. ETL	Electron Tubes	United Kingdom	
23. U-Aarhus	University of Aarhus	Denmark	
24. AGT	AGT Ingegneria Srl, Perugia	Italy	

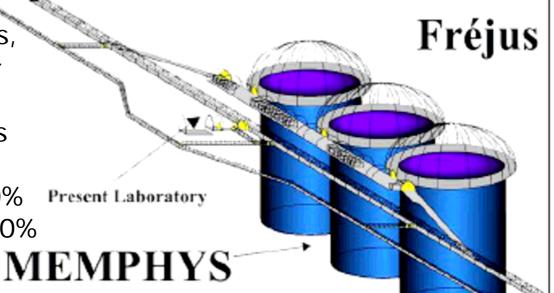
Work package no.	Work package title	Type of activity	Lead participant no.	Person- months	Start month	End month
WP1	Management, coordination and assessment	MGT	ETHZ	52	1	36
WP2	Underground Infrastructures and Engineering	RTD	U-Oulu	221	1	35
WP3	Tank Infrastructure and Liquid Handling	RTD	TUM	249	1	35
WP4	Tank Instrumentation and Data Handling	RTD	IN2P3	439	1	35
WP5	Safety and environmental issues	RTD	U-Sheffield	65	1	35
WP6	Science Impact and Outreach	RTD	IFJ PAN	454	1	35
	TOTAL			1480		

Detector concepts

Three liquids: water (MEMPHYS), scintillator (LENA), liquid

argon (GLACIER) Present Tunnel 65 m MEMPHYS: Water Cherenkov, (420 kton -1 Mton) Future Safety Tunnel LENA: Present Laboratory Liquid Scintillator Future Laboratory (30-70 kton) with Water Cerenkov Detectors 100m 30 m Muon veta ~12000 PMT (50cm)

GLACIER: Liquid Argon (50 -100 kton)


MEMPHYS - water Cherenkov detector

Concept: initial work for the Frejus laboratory, the SuperKamiokande detector as a prototype, rescaling by a factor up to 20

Advantages: the cheapest target material, mature technology, possible extrapolation to the 1 Mton mass

Challenges: better and cheaper photomultipliers, dopping with GdCl₃

Construction: 3-5 tanks, each one with a diameter and a height of 65 m, fiducial mass of 147 ktons read out by 81000 photomultipliers (12" – 30% surface coverage, 20" – 40% coverage)

LENA - the liquid scintillator detector

Concept: initial work for the Pyhäsalmi mine in Finland (underwater placement near Pylos was also concidered), the Borexino, Chooz and KamLAND detectors as prototypes, rescaling by a factor 40-50

Advantages: very low energy threshold, good energy resolution, known technology

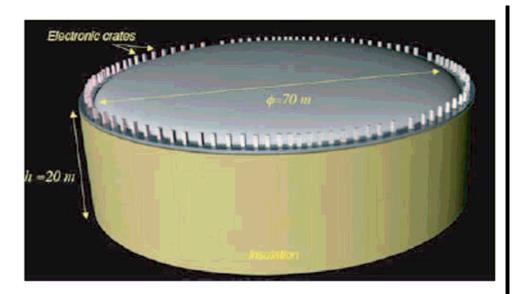
Challenges: scintillator cleaning, better and cheaper light detection (photomultipliers, light concentrators)

100m_____

Construction: cylindrical tank 100m long and with a diameter of 30m, fiducial mass of about 50 ktons, readout by 12 000 photomultipliers (20" – 30% surface coverage, with added light concentrates – 30m 50% coverage) 1 06 2007

inner detector ~50.000 m³

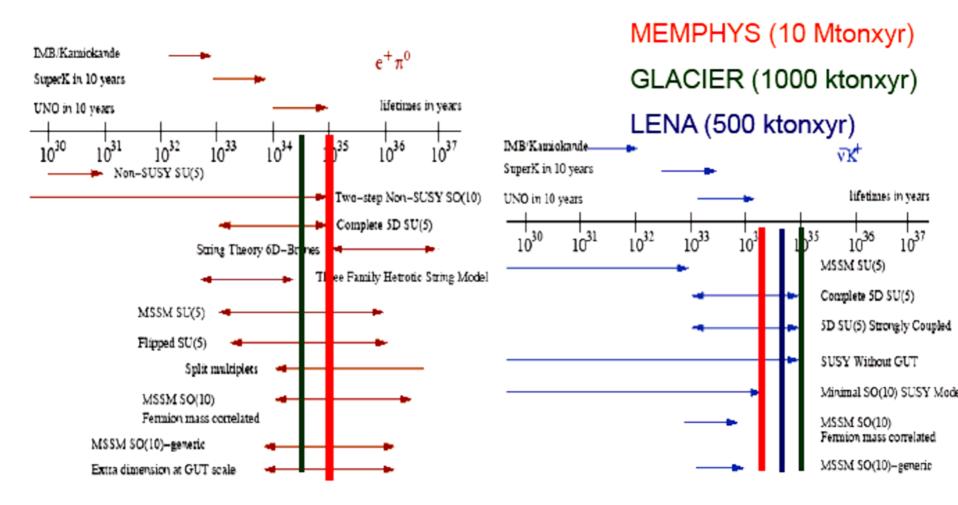
GLACIER - the Liquid Argon detector


Concept: initialy developed for Sieroszowice and Gran Sasso, prototype – the ICARUS detector, rescaling by a factor 150

Advantages: very good positional and energetic resolutions

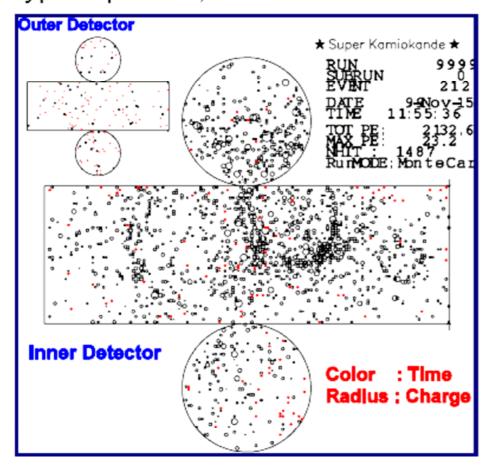
→ imaging topologies, identification of low energy hadrons

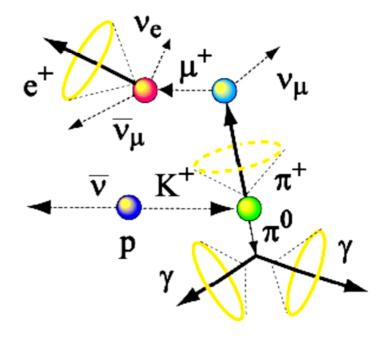
Challanges: 20-m long drift of electrons, huge cryogenic installation, dewar thermal insulation


Construction: cylinder 70m in diameter and 20 m hight, total mass - 100 ktons of Liquid Argon, read out of the electron ionisation and light signals (scintillations - 1000 8" PMT, Cherenkov light - 27000 8" PMT)

Research programme

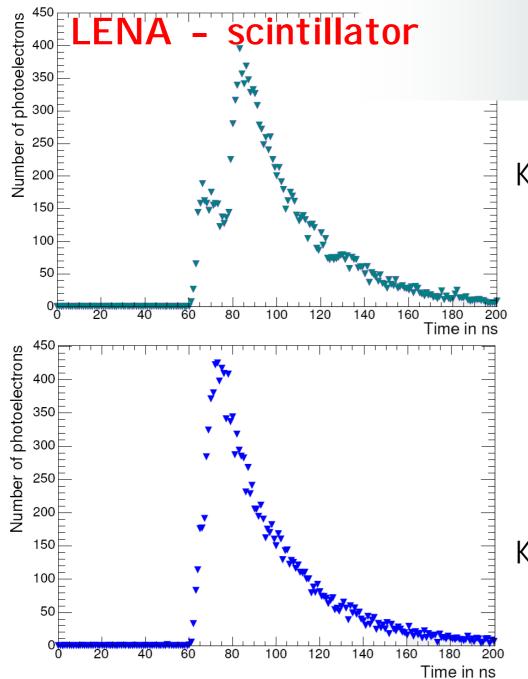
- 1. Search for the proton decay
- 2. Studies of the low energy neutrinos from astrophysical sources (SN explosion, Sun, atmosheric neutrinos, relic SN neutrinos in our galaxy) and of the geo-neutrinos
- 3. Studies of the neutrino properties based on accelarator neutrino beams


Proton decay



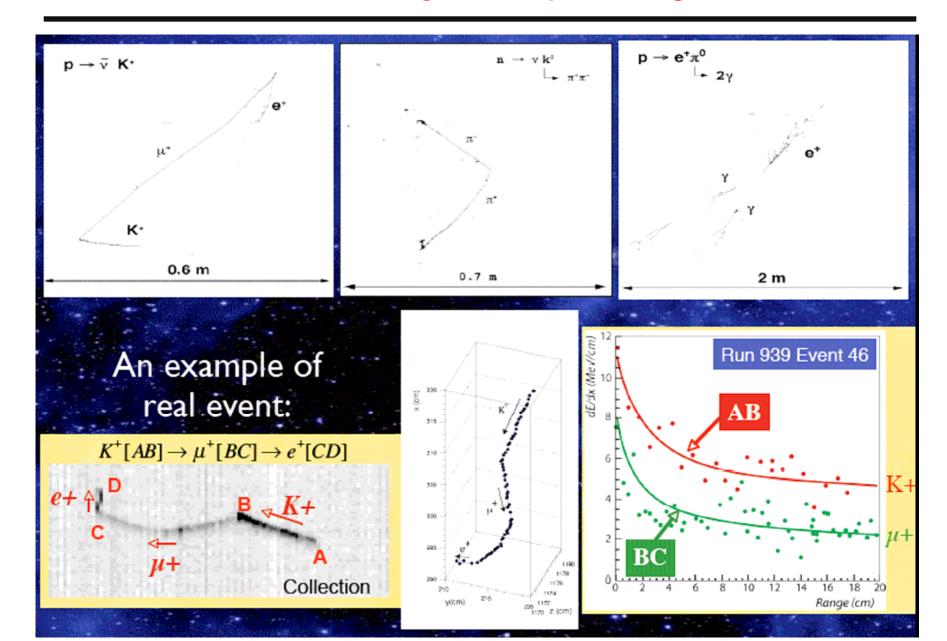
Zakopane, 21.06.2007

$p \rightarrow vK^+, K^+ \rightarrow \pi^+\pi^0 \text{ search (SK-I)}$


typical p $\rightarrow vK^+$, $K^+ \rightarrow \pi^+\pi^0$ MC event

selection criteria

- 2 e-like ring
- 1 Michel electron
- 85 < m_{_0} < 185 MeV/c²
- 175<p_{π0} < 250MeV/c
- 40 < Q_{π+} < 100PE, Q_{res} < 70PE</p>


PROTON DECAY EVENT SIGNATURE

Kaon decay after 18ns

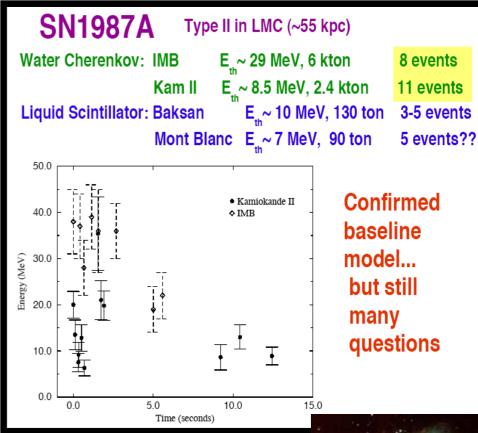
Challenge: short decay time of the Kaon (12.8ns)

Kaon decay after 5ns

Proton decay in Liquid Argon

Neutrinos from Supernova explosions

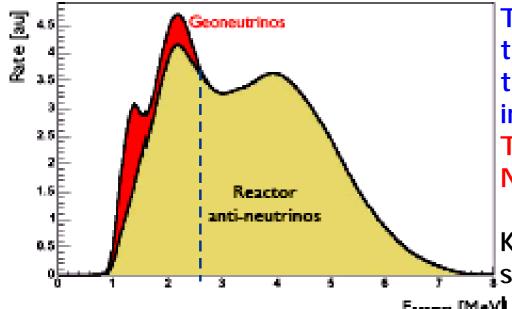
1. Supernova physics:


- Gravitational collapse mechanism
- Supernova evolution in time
- Burst detection
- Cooling of the proto-neutron star
- Shock wave propagation
- Black hole formation?

2. Neutrino properties

- Neutrino mass (time of flight delay)
- Oscillation parameters (flavor transformation in SN core and/or in Earth): Type of mass hierarchy and θ_{13} mixing angle

3. Early alert for astronomers


Pointing to the supernova

A. Rubbia

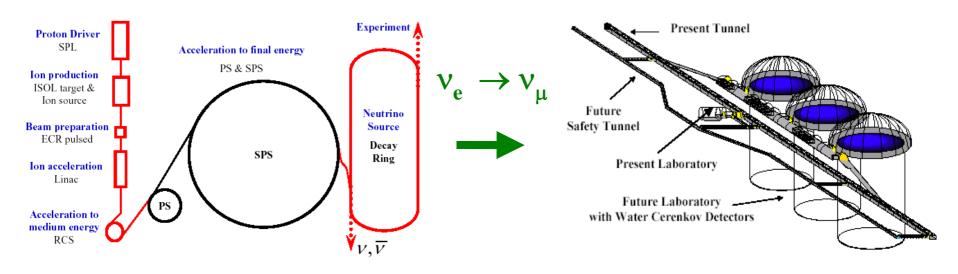
Geo-neutrinos

- Antineutrinos from ²³⁸U, ²³²Th i ⁴⁰K decays inside Earth allow the estimation of the heat generation due to these decays.
- KamLAND experiment provided the first measurement of the flux of geo-neutrinos from the U and Th decays (geo-neutrinos from K decays have energies below the detection threshold in scintillator)

The KamLAND limit for the heat production due to the radioactive decays inside earth < 60 TW T.Araki et al., Nature 436 (2005) 467

KamLAND:

signal 25⁺¹⁹-18, background 127±13


Eprompt [MeV]LENA:

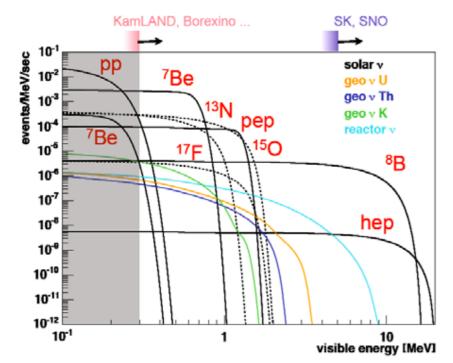
expected signal 1000, background 240(events/year)

Zakopane, 21.06.2007

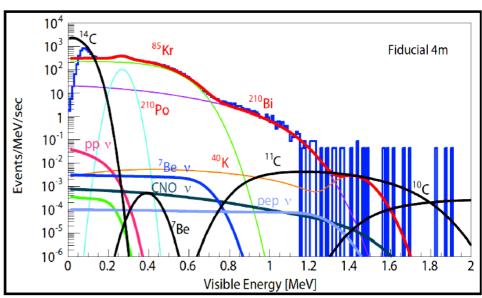
Neutrinos from β beam – MEMPHYS

- Acceleration of ⁶He nuclei (source of antineutrinos) and of ¹⁸Ne nuclei (source of neutrinos), R&D in the framework of EURI SOL DS. (FP6)
- ...But a small obstacle (worth ~1 billion CHF) the programme requires a serious intervention into the CERN accelerator chain, also problems with poor knowledge of low energy neutrino cross-sections

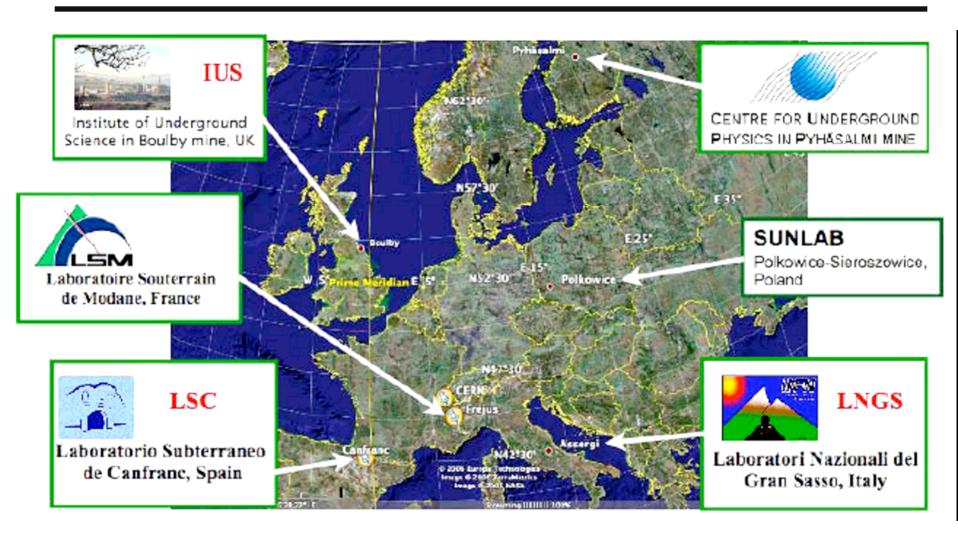
Zakopane, 21.06.2007


Low energy neutrinos - cont.

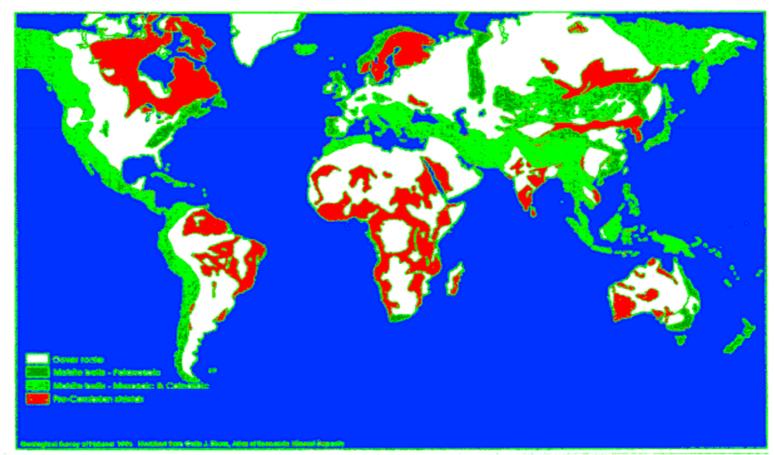
Atmospheric neutrinos – a very big range of E/L,


Search for WIMPS in the SUN and Earth cores

Neutrino astronomy of the Sun

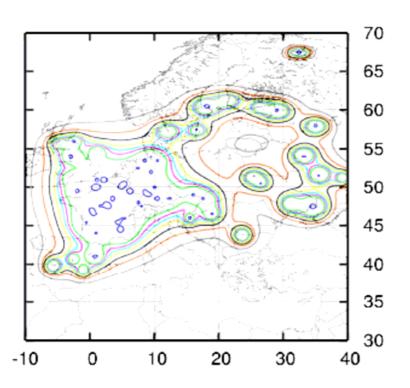

Energy spectrum for the $\,
u_e e\,$ elastic scattering

2006 - spectrum in KamLAND


Possible localizations of the future large underground laboratory

Bedrock zones in the Earth

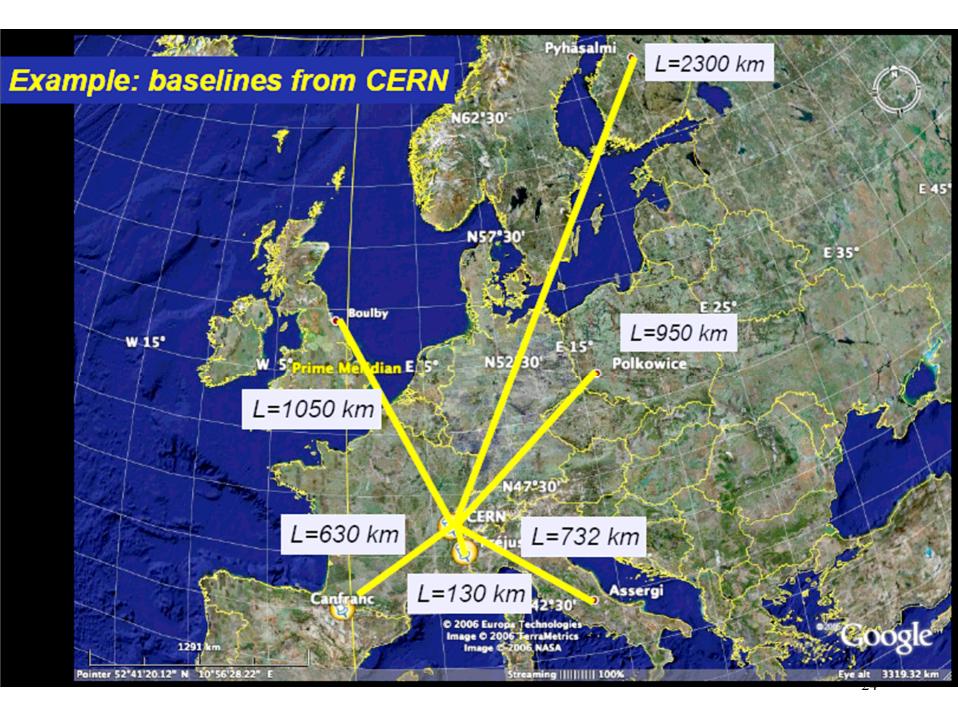
- Red: very old bedrock, hard crystalline rock: usually very good
- Green: mobile belts (mountains etc), hard rock: fair/variable
- White: sedimentary covers (soft rock): often bad
- Local variations within each zone



Nuclear reactor background

- Relevant mostly for LENA
- Reactor fluxes estimated globally
- Marine reactors irrelevant?

Reactor electron anti-neutrino flux density


Prediction for 2015

1e+09	
9e+09	
8e+08	
7e+08	
6e+08	
5e+08	
4e+08	
3e + 08	

Location	v (10° 1/m² s)
Pyhäsalmi	40
Gran Sasso	54
Frejus	175
Canfranc	196
Boulby	190
Kamioka	408
Sudbury	100
Soudan	33
Pylos	12

2005

Sieroszowice mine (Poland) - big salt cavern

Volume (100x15x20) m3

Depth ~950 m from a surface

Salt layer ~70 m thick

Temperature ~35°C

Very good radioactive background conditions

Copper - 6th position
in the world's exploitation
ranking
Silver - 2nd position
But also Salt
A. Zalewska

A.Rubbia, Fermilab, 16-17.09.2006

Background due to natural radioactivity

Salt: W.Mietelski et al

U-238: 0.0165+-0.0030 Bq/kg

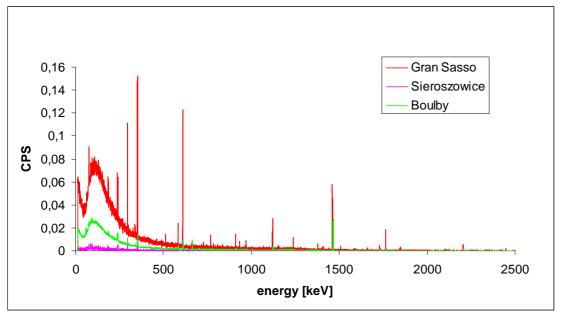
U-234: 0.0225+-0.0030 Bq/kg

Th-232: 0.008+-0.001 Bq/kg

K-40: 4.0 +-0.9 Bq/kg

Anhidrite:

U-238: 0.82+-0.10 Bq/kg


U-234: 0.76+-0.09 Bq/kg

Th-232: 0.52+-0.15 Bq/kg

Th-230: 1.26+-0.24 Bq/kg

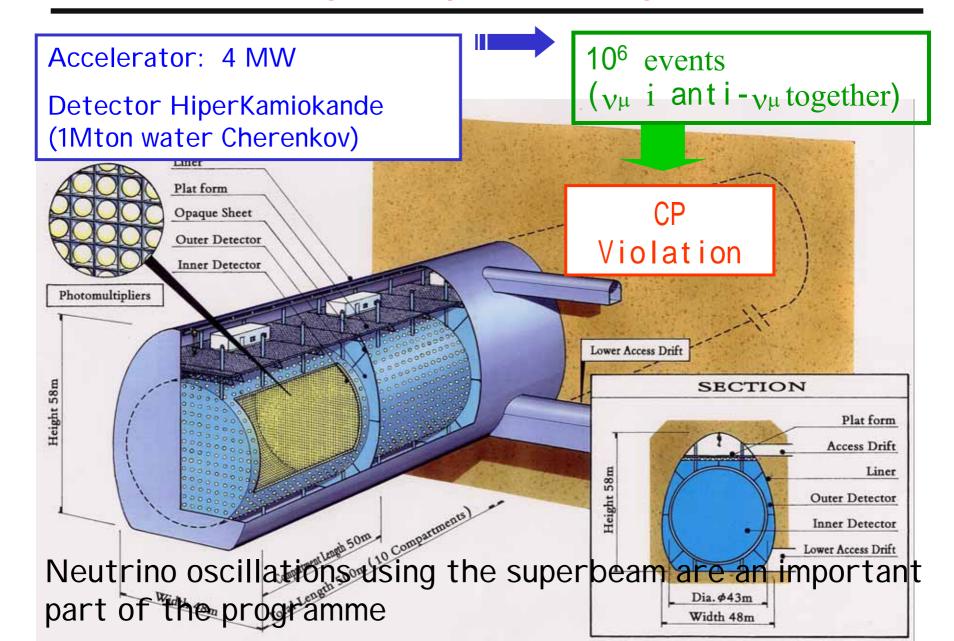
Natural radioactivity - in-situ measurements

J.Kisiel et al..

In situ measurements: GS, Boulby, Sieroszowice Integral background counting rates

Energy [keV]	Gran Sasso	Boulby	Sieroszowice	
50-2700	57.68 (0.05)	17.00 (0.01)	2.30 (0.02)	

Zakopane, 21.06.2007

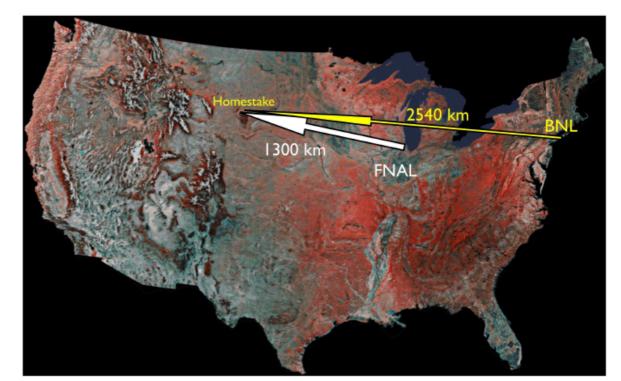

Localization of the future laboratory

Very preliminary sites vs experiments

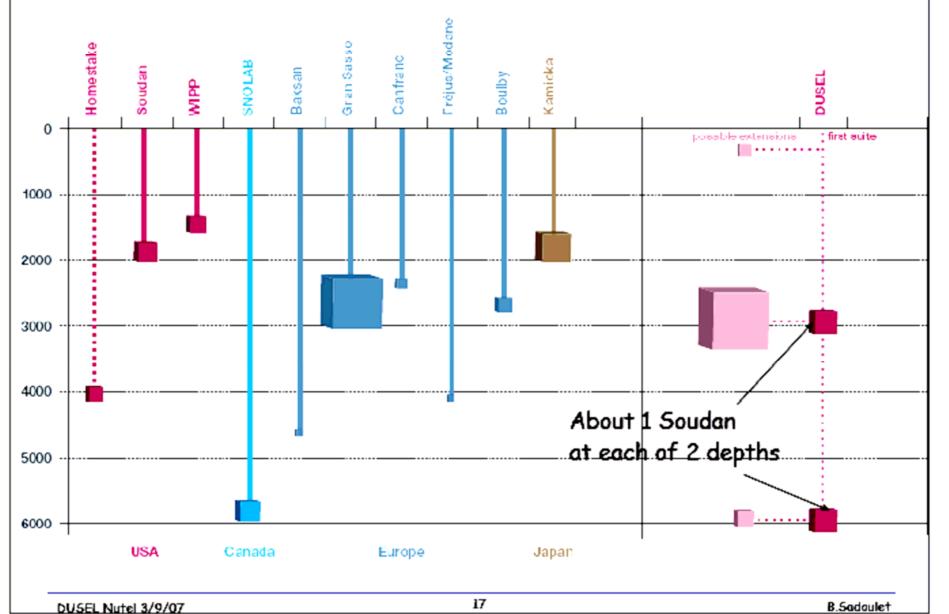
		Mt Water Cerenkov	50 kt Liquid Scintillator	100 kt Liquid Argon
Fréjus	Tunnel / hard rock	√√√	₩	₩
Gran Sasso	Tunnel / soft rock	√	₩	√
Canfranc	Tunnel	?	?	?
Pyhäsalmi	Mine / hard rock	√	₩	₩
Boulby	Mine / salt (potash)	?	?	?
Polkowice - Sieroszowice	Mine / salt & rock	√	₩	√√√
Green fields	Own shaft / Hard rock	√	√	₩

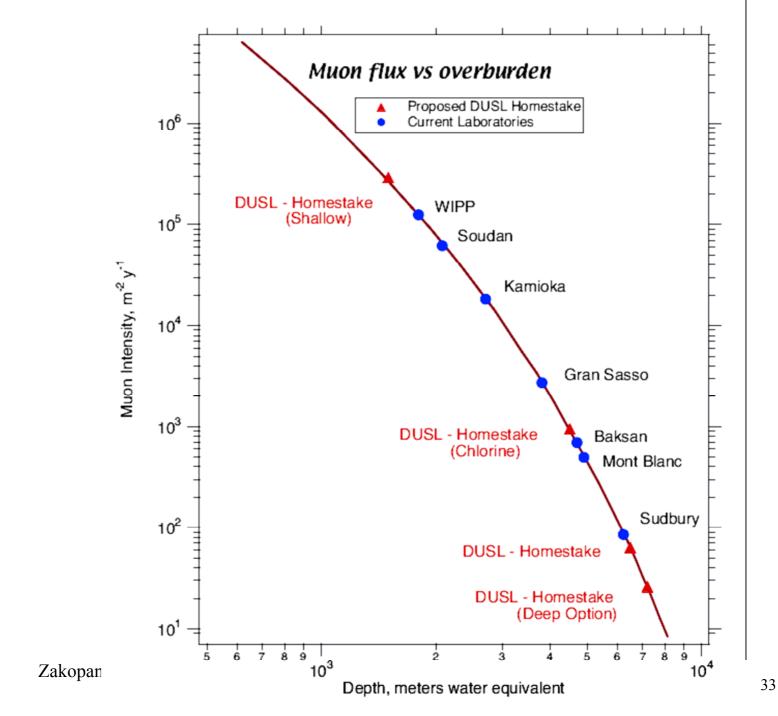
√√√ primary interest; √√ probably; √ unlikely; ? unknown

Outside Europe: Japan - T2K phase II (?)


Outside Europe: USA - DUSEL

DUSEL - Deep Underground Science and Engineering Laboratory


Very rich interdisciplinary programme – from fundamental physics, through biology and egineering studies to the education and outreach.


Four proposed localizations (Homestake, Henderson mine, Pioneer Tunnel, Soudan), decision soon, startup in 2010 according to the most

optimistic scenario.

