The LAGUNA project (Large Apparatus studying Grand Unification and Neutrino Astrophysics)

Agnieszka Zalewska – IFJ PAN, Poland ETHZ, 18.11.2008

What is LAGUNA

Detector concepts

Research program

Localization of the future large European laboratory

What is LAGUNA?

1. The European project "Large Apparatus studying Grand Unification and Neutrino Astrophysics" aiming at defining and realizing this research programme in Europe.

2. It includes a majority of European physicists interested in the construction of very massive detector(s) ($10^5 - 10^6$ tons) realized in one of the three technologies using liquids: water, liquid argon and liquid scintillator.

3. No one of the existing European underground laboratories is able to host such a huge detector \rightarrow a new large underground infrastructure is needed.

4. The group applied for the RI Design Study in the framework of FP7 (2.05.2007) with the main goal to study possible localizations of the future laboratory together with further R&D for the proposed detector technologies.

The ApPEC recommendation, January 2007

"We recommend that a new large European infrastructure is put forward, as a future international multi-purpose facility on the 100'000-1'000'000 tons scale for improved studies of proton decay and of low-energy neutrinos from astrophysical origin. The three detection techniques being studied for such large detectors in Europe, Water-Cherenkov, Liquid Scintillator and Liquid Argon, should be evaluated in the context of a common design study, which should also address the underground infrastructure, and the possibility of an eventual detection of future accelerator neutrino beams. This design study should take into account worldwide efforts and converge, on a time scale of 2010, to a common proposal."

The ApPEC roadmap, January 2007

	Field/ Experiments	Cost scale (M@)	Desirable start of	Remarks
			construction	
	Dark Matter Search:	60-100 M€	2011-2013	2 experiments (different
	Low background experiments with 1-ton	60-100 ME	2011-2015	nuclei, different techniques), e.g. 1 bolometric, 1 noble
	mass			liquid; more than 2
				worldwide.
	Proton decay and low			 multi-purpose
	energy neutrino			- 3 different techniques;
	astronomy:			large synergy between them.
	Large infrastructure for p-	400-800 M€	2011-2013	- needs huge new excavation
	decay and v astronomy on			- expenditures likely also
	the 100kt-1Mton scale			after 2015
				 worldwide sharing
				 possibly also accelerator neutrinos
				in long baseline
				experiments
	The high energy universe:			,
	Gamma rays:			
	Cherenkov Telescope Array	100 M€ (South)	first site	Physics potential well
	CTA	50 M€ (North)	in 2010	defined by rich physics from
	Charged Cosmic Rays:			present gamma experiments
	Auger North	85 M€	2009	Confirmation of physics
	- inger Florin		2007	potential from Auger South
				results expected in 2007
	Neutrinos:			-
	KM3NeT	300 ME	2011	FP6 design study.
				Confirmation of physics
				potential from IceCube and gamma ray telescopes
				expected in 2008-2010
ETHZ:	Gravitational Waves:		Civil	-
	Third generation	250-300 M€	engineering	Conceived as underground
	interferometer		2012	laboratory

COLLABORATIVE PROJECT

Design Study

FP7-INFRASTRUCTURES-2007-1

<u>Proposal title (max 200 characters)</u>	<u>Design of a pan-European</u> <u>Infrastructure for Large Apparatus</u> <u>studying Grand Unification and</u> <u>Neutrino Astrophysics</u>
<u>Proposal acronym</u>	<u>LAGUNA</u>
Type of funding scheme	<u>RI design study implemented as</u> <u>Collaborative Project</u>
<u>Work programme topics addressed</u>	<u>Deep underground science, particle</u> physics, astroparticle physics
Name of the coordinating person	Prof. André Rubbia
ETHZ1, 18.11.2008	

LAGUNA - after negociations with the EC

Approved by the European Commission but with the recommendation to concentrate on the underground laboratory site studies

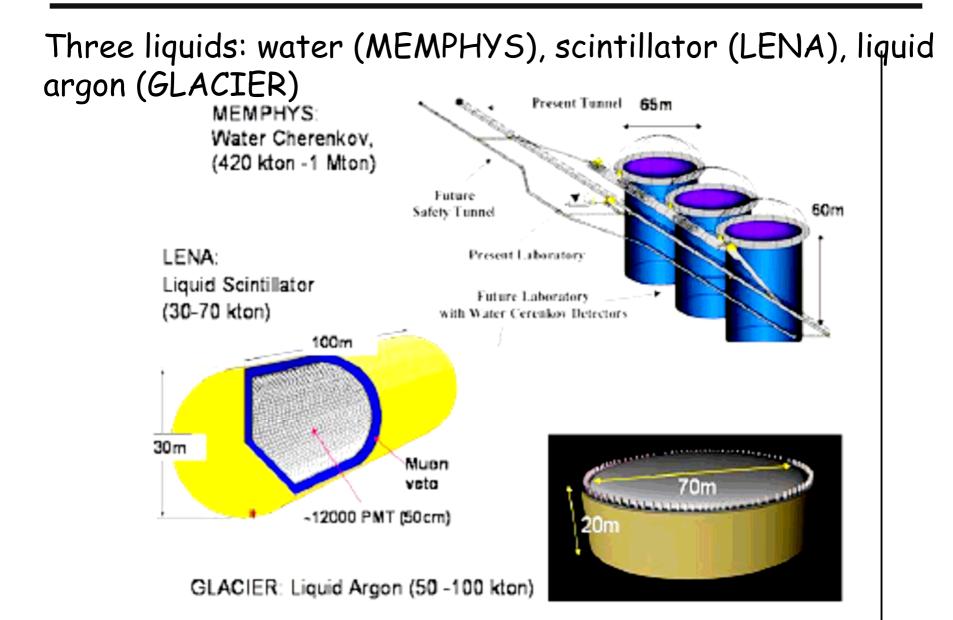
Funding - 1.7 mln Euro (out of 5 mln in the application) - detector R&D should be funded with different money

Two years study with a start up on the 1st of July 2008, kick-off meeting at ETH Zurich, 3-4 July 2008, the second meeting in Bucharest, 5-7 November 2008. **Results of the study should be ready for the ESFRI** recommendations in 2010

The LAGUNA Collaboration

21 beneficiaries (16 scientific partners, 5 industrial partners) plus 9 affiliated scientific institutions

~100 participants from 10 countries


Beneficiary no.	Denoficiary name	Beneficiary short name	Comptant	Date enter	Date exit
Beneficiary no.	Beneficiary name	short name	Country	project	project
1. (coordinator)	Swiss Federal Institute of Technology Zurich	ETH Zurich	Switzerland	1	24
2.	University of Bern	U-Bern	Switzerland	1	24
3.	University of Jyväskylä	U-Jyväskylä	Finland	1	24
4.	University of Oulu	U-Oulu	Finland	1	24
5.	Kalliosuunnittelu Oy Rockplan Ltd	Rockplan	Finland	1	24
б.	Commissariat à l'Energie Atomique / Direction des Sciences de la Matière	CEA	France	1	24
7.	Institut National de Physique Nucléaire et de Physique des Particules (CNRS/IN2P3)	IN2P3	France	1	24
8.	Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.	MPG	Germany	1	24
9.	Technische Universität München	TUM	Germany	1	24
10.	H.Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences, Krakow	IFJ PAN	Poland	1	24
11.	KGHM CUPRUM Ltd Research and Development Centre	KGHM CUPRUM	Poland	1	24
12.	Mineral and Energy Economy Research Institute of the Polish Academy of Sciences	IGSMİE PAN	Poland	1	24
13.	Laboratorio Subterraneo de Canfranc	LSC	Spain	1	24
14.	Universidad Autonoma, Madrid	UAM	Spain	1	24
15.	University of Granada	UGR	Spain	1	24
16.	University of Durham	UDUR	United Kingdom	1	24
17.	The University of Sheffield	U-Sheffield	United Kingdom	1	24
18.	Technodyne International Ltd	Technodyne	United Kingdom	1	24
19.	University of Aarhus	U-Aarhus	Denmark	1	24
20.	AGT Ingegneria Srl, Perugia	AGT	Italy	1	24
21.	Institute of Physics and Nuclear Engineering, Bucharest	IFIN-HH	Romania	1	24

Work packages (Switzerland organizes Europe)

B.1.3.3. Work package list / overview

Work package no.	Work package title	Type of activity	Lead beneficiary no.	Person- months	Start month	End month
WP1	Management, coordination and assessment	MGT	ETHZ	26.5	1	24
WP2	Underground Infrastructures and Engineering	RTD	TUM	157.5	1	24
WP3	Safety, environmental and socio-economic issues	RTD	U-Sheffield	46	1	24
WP4	Science Impact and Outreach	RTD	IFJ PAN	49.9	1	24
	TOTAL			279.9		

Detector concepts

MEMPHYS - water Cherenkov detector

Concept: initial work for the Frejus laboratory, the SuperKamiokande detector as a prototype, rescaling by a factor up to 20

Advantages: the cheapest target material, mature technology, possible extrapolation to the 1 Mton mass

Challenges: better and cheaper photomultipliers, dopping with GdCl₃

Construction: 3-5 tanks, each one with a diameter and a height of 65 m, fiducial mass of 147 ktons read out by 81000 photomultipliers (12" - 30% surface coverage, 20" - 40% coverage) MEMPHYS

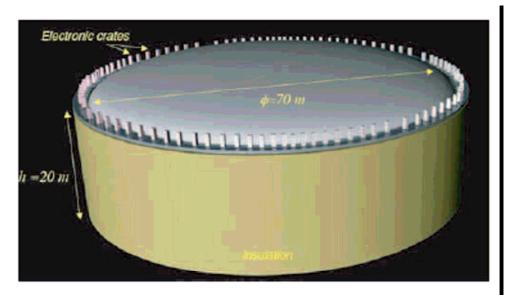
LENA – the liquid scintillator detector

Concept: initial work for the Pyhäsalmi mine in Finland, the Borexino, Chooz and KamLAND detectors as prototypes, rescaling by a factor 50

Advantages: very low energy threshold, good energy resolution, known technology

Challenges: scintillator cleaning, better and cheaper light detection (photomultipliers, light concentrators)

Construction: cylindrical tank 100m high and with a diameter of 30m, fiducial mass of about 50 ktons, readout by 12 000 photomultipliers (20" - 30% surface coverage, with added light concentrators - 50% coverage)


GLACIER - the Liquid Argon detector

Concept: initial work for Sieroszowice and Gran Sasso, prototype – the ICARUS detector, rescaling by a factor 150

Advantages: very good positional and energetic resolutions \rightarrow imaging topologies, identification of low energy hadrons

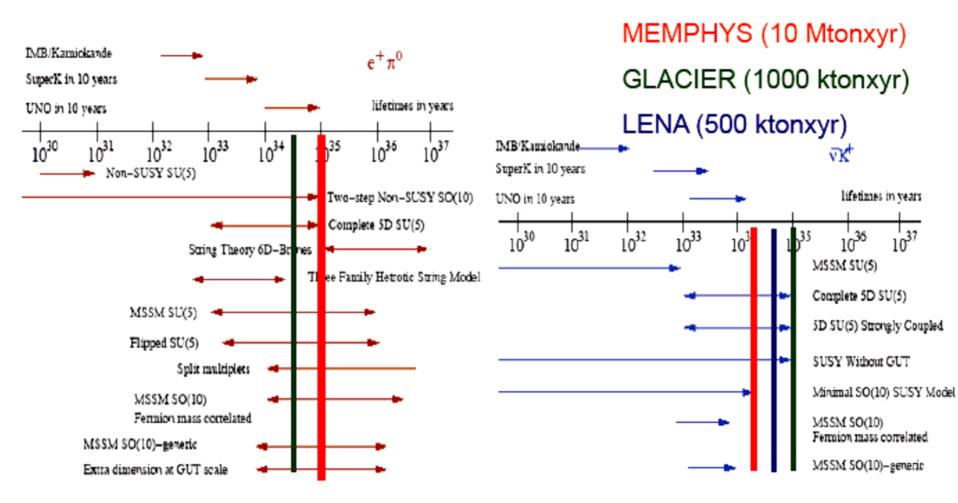
Challanges: 20-m long drift of electrons, huge cryogenic installation

Construction: cylinder 70m in diameter and 20 m hight, total mass - 100 ktons of Liquid Argon, read out of the ionisation signal and two types of light signals (scintillations and Cherenkov light)

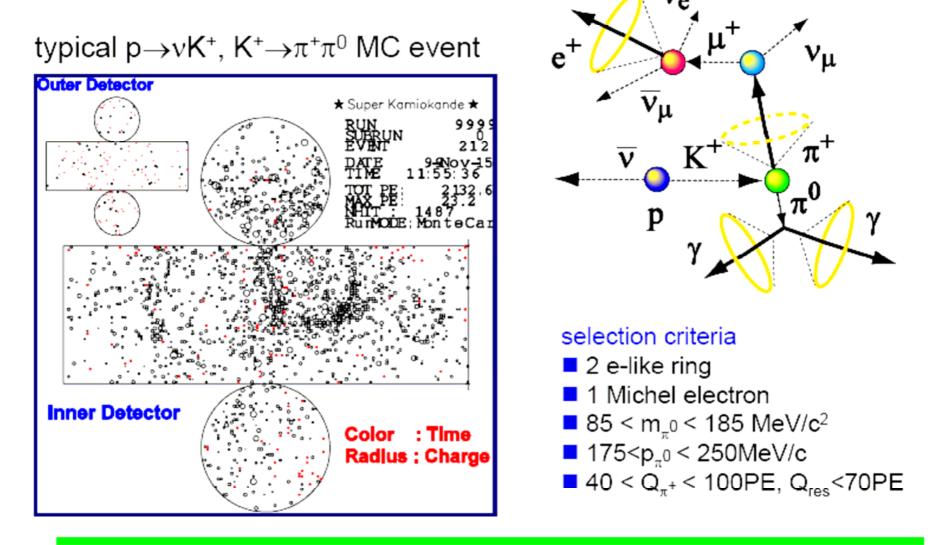
Research programme

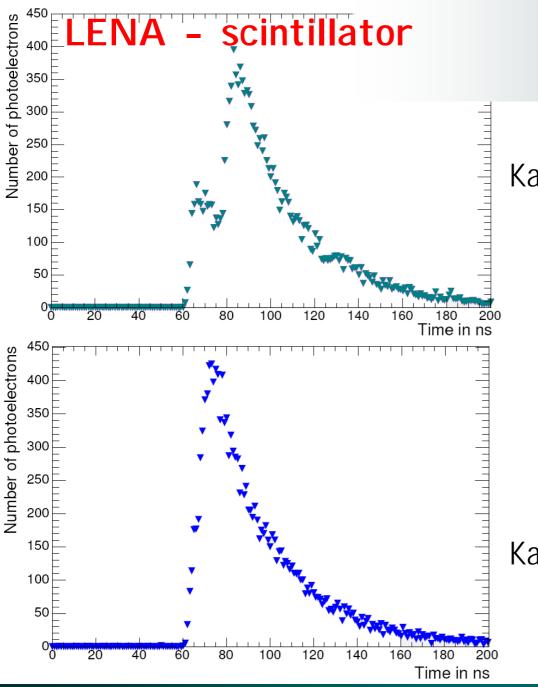
1. Searches for proton decay

2. Studies of low energy neutrinos from astrophysical sources (SN explosion, Sun, atmosheric neutrinos, relic SN neutrinos in our galaxy) and of geo-neutrinos


3. Studies of neutrino properties based on accelarator neutrino beams

J.Aysto et al., hep-ph/07050116; J. Cosmol. Astropart. Phys. 11 (2007) 011;

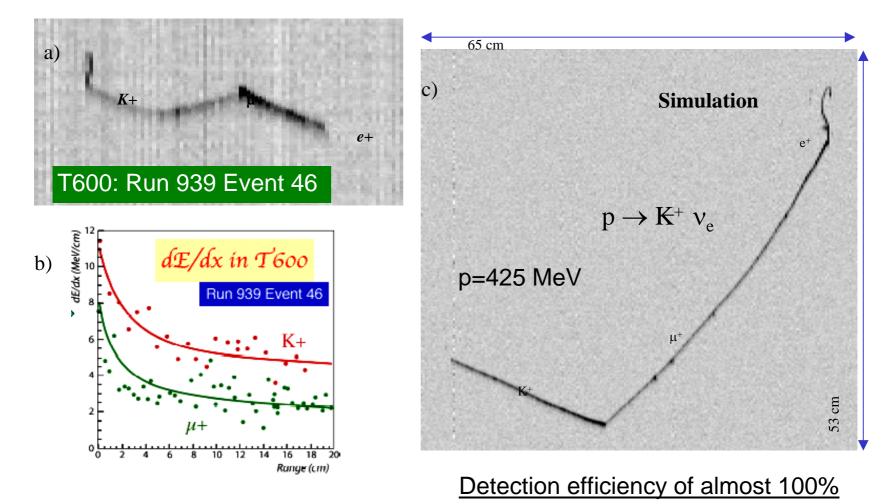

Topics	GLACIER (100 kt)	LENA (50 kt)	MEMPHYS (400 kt)
proton decay, sensitivity (years)			
decay mode e ⁺ π ⁰	0.5 - 1033	TBD	1.0 · 1035
decay mode anti-v K ⁺	1.1 1035	0.4 · 10 ³⁵	0.2 · 1035
SN at 10 kpc, # events CC NC ES	2.5 · 10 ⁴ (v _e) 3.0 · 10 ⁴ 1.0 · 10 ³ (e)	9.0 · 10 ³ (anti-v _e) 3.0 · 10 ³ 5.0 · 10 ³ (p) 6.0 · 10 ² (p)	2.0 · 10 ³ (anti-v _e) · 1.0 · 10 ³ (e)
Diffuse SN # Signal/Background events (after 5 years)	60/30	(10-115)/4	(40-110)/50 (with Gadolinium)
Solar neutrinos # events, 1 year	⁸ B ES : 4.5 · 10 ⁴ Abs: 1.6 · 10 ³	⁷ Be: 2.0 · 10 ⁶ pep: 7.7 · 10 ⁴ CNO: 7.6 · 10 ⁴ ⁸ B(CC): 3.6 · 10 ² ⁸ B(NC): 5 · 10 ³	⁸ B ES: 1.1 · 10 ³
Atmospheric v # events, 1 year	1.1 · 10 ⁴	TBD	4.0 · 104
Geo-neutrinos # events, 1 year	Below threshold	1.5 · 10 ³	Below threshold


Table 1 Overview of the physics potential of the three types of instruments considered

Proton decay

$p \rightarrow \nu K^+, K^+ \rightarrow \pi^+ \pi^0 \text{ search (SK-I)}$

PROTON DECAY EVENT SIGNATURE


Kaon decay after 18ns

Challenge: short decay time of Kaon (12.8ns)

Kaon decay after 5ns

Proton Decay

Proton decay in Liquid Argon

with practically no background

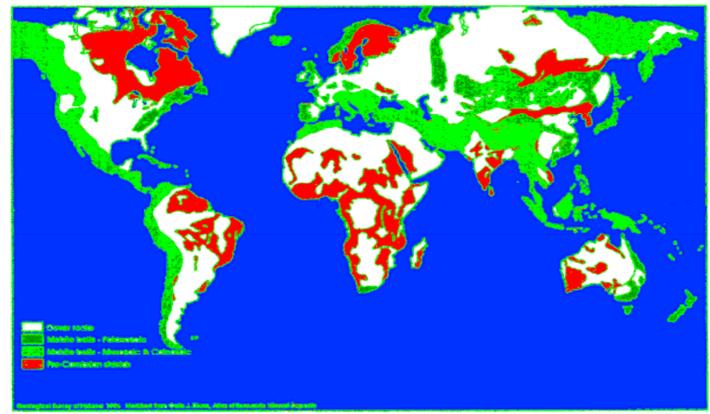
Possible localizations of the future large underground laboratory

SITE STUDY

Candidate Sites

- Boulby, UK
- Canfránc, Spain
- Fréjus, France
- Pyhäsalmi, Finland
- Sieroszowice, Poland
- Slanic, Romania
- Caso, Italy

LAGUNA Collaboration


100 scientists more than 20 institutes 1**0**European countries

Localization criteria - 1.

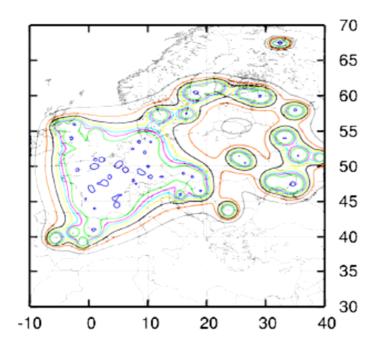
Bedrock zones in the Earth

- Red: very old bedrock, hard crystalline rock: usually very good
- Green: mobile belts (mountains etc), hard rock: fair/variable
- White: sedimentary covers (soft rock): often bad
- Local variations within each zone

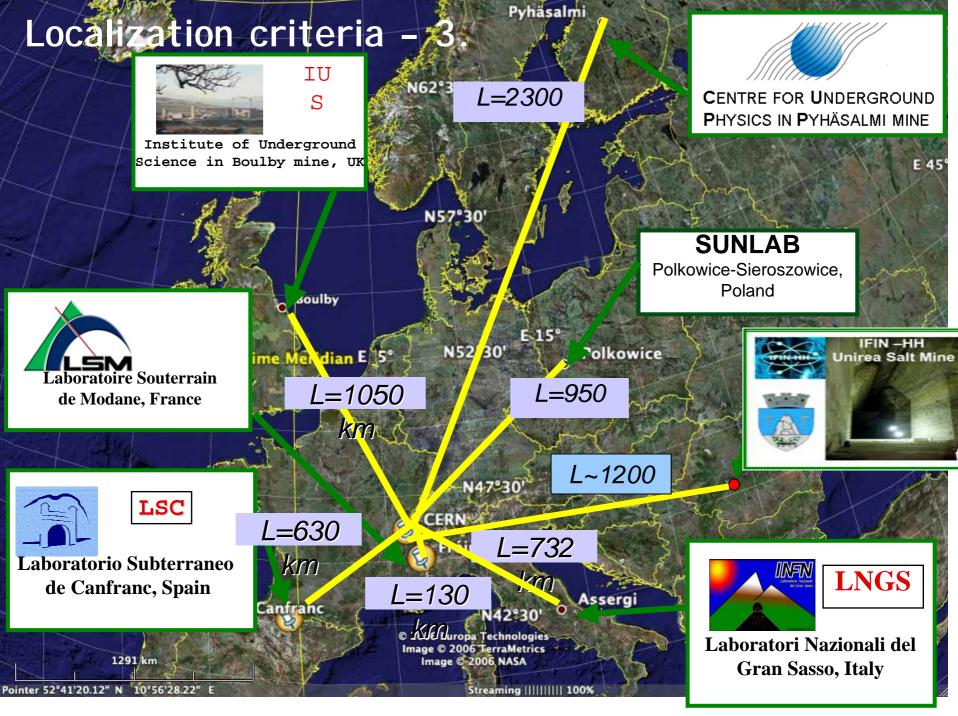
Localization criteria – 2.

Nuclear reactor background

1e+09 9e+09 8e+08 7e+08 6e+08

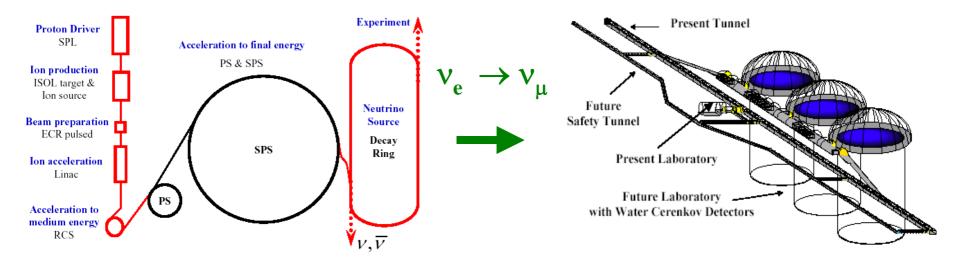

5e+08 4e+08

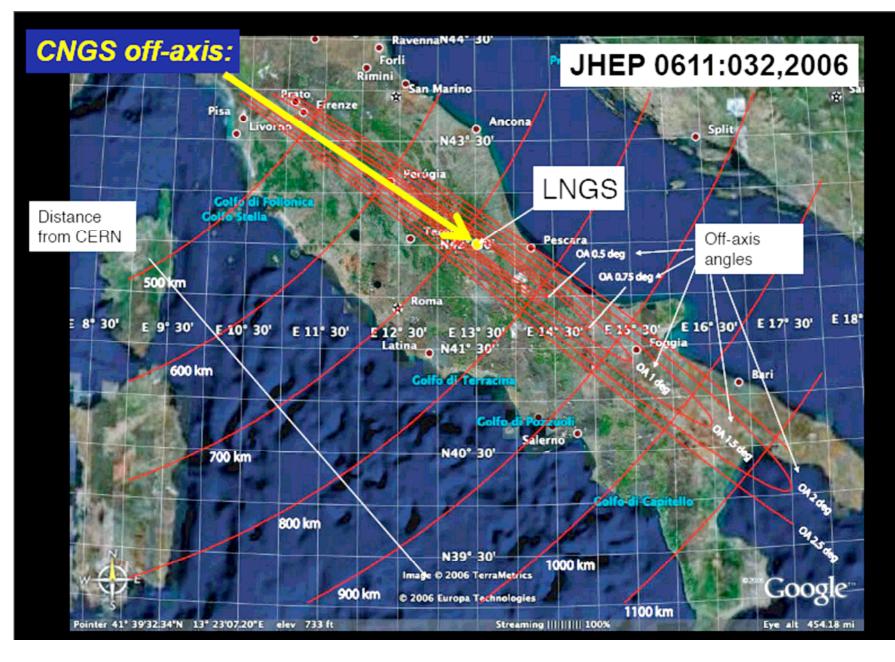
3e+08


- Relevant mostly for LENA
- Reactor fluxes estimated globally
- Marine reactors irrelevant?

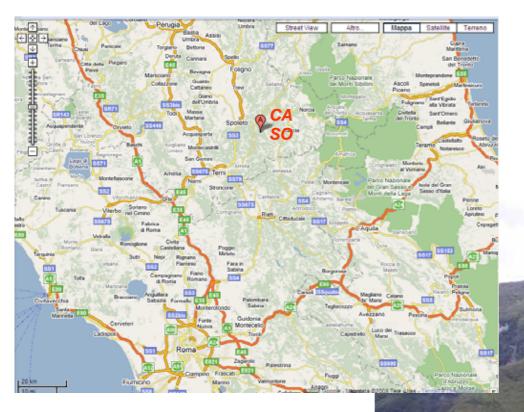
Reactor electron anti-neutrino flux density

Prediction for 2015


Location	v (10ª 1/m² s)
Pyhäsaln	ni 40
Gran Sas	sso 54
Frejus	175
Canfranc	: 196
Boulby	190
Kamioka	408
Sudbury	100
Soudan	33
Pylos	12
	2005


Neutrinos from β beam – oscillations in MEMPHYS

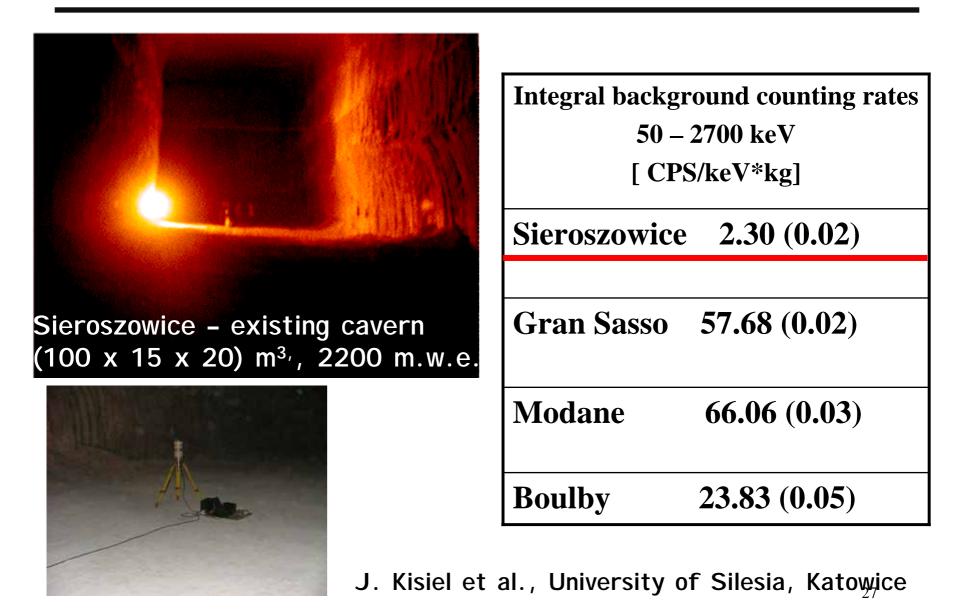
Acceleration of ⁶He nuclei (source of antineutrinos) and of ¹⁸Ne nuclei (source of neutrinos), R&D in the framework of EURISOL DS. (FP6)


• ...But a small obstacle (worth ~1 billion CHF) - the programme requires a serious intervention into the CERN accelerator chain, also problems with poor knowledge of low energy neutrino cross-sections

Localization criteria - 4.

"CASO" site - a shallow localization in Umbria, Italy

•SMALL OFF-AXIS ANGLE W.R.T. THE EXISTING CNGS BEAM

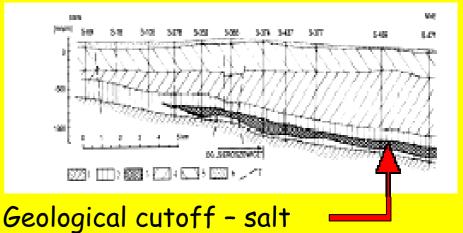

•DISTANCE FROM CERN: ~500 km

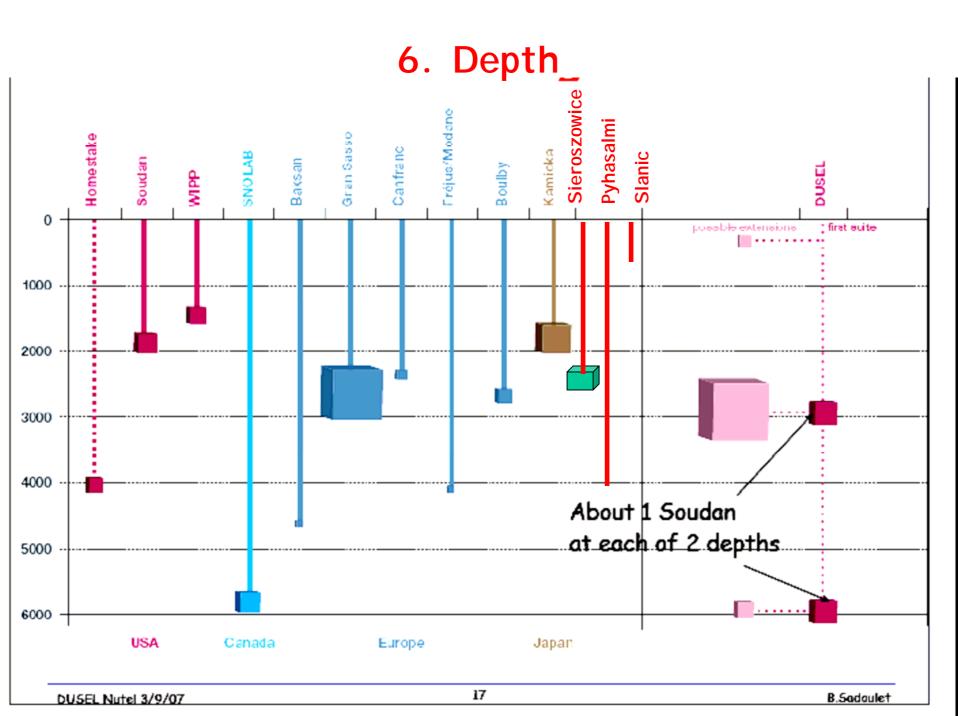
•PLATFORM LIMESTONE

•HYDROGEOLOGY: NO INTERACTION BETWEEN GROUND WATER AND CAVERN/ACCESS TUNNEL

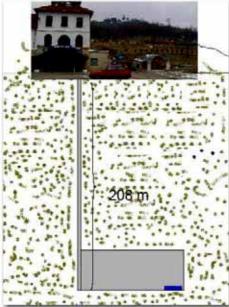
Could be good for Glacier (AGT Ingegneria)

5. Natural radioactivity of rocks

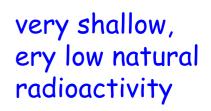

SUNLAB (Sieroszowice UNderground LAB- where?



Near Wrocław, south-west of Poland - easily accessible from the Wroclaw airport and from the A4 motor-way, 950 km from CERN


In the Polkowice-Sieroszowice copper mine (belonging to the KGHM holding)

SLANIC salt mine, Romania - most shallow site



The Unirea sal	t mine environment:
temperature:	12.0 -13.0 °C
humidity:	65-70 %
excavated volur	me: 2.9 million m ³
floor area:	70000 m ²
average high:	52-57 m

Salt lens dimensions:

5km	
3km	
0.5km	

OU FOR YOUR ATTENTIO

... and the deepest site, Finland

Location of the Pyhäsalmi site

- Pyhäsalmi mine in Pyhäjärvi town
- Connections
 - Roads open all year round
 - Pyhäjärvi-Oulu: 2 h car drive
 - Pyhäjärvi-Jyväskylä: 2 h car drive
 - Pyhäjärvi-Helsinki: bus & train connections
 - 4 airports within 2 hours drive, connections
 - Oulu-Helsinki: ca 20 flights a day
 - Railway to the mine
- Distance to accelerators
 - CERN 2300 km
 - Density profile well known
 - JPARC 7100 km

Conclusions

Very interesting and challenging project

Short time scale - results in two years to fit the ESFRI recommendation process